Comprehensive learning and adaptive teaching: Distilling multi-modal knowledge for pathological glioma grading

计算机科学 分级(工程) 情态动词 推论 人工智能 机器学习 模式 深度学习 模式识别(心理学) 自然语言处理 数据挖掘 社会科学 化学 土木工程 社会学 高分子化学 工程类
作者
Xiaohan Xing,Meilu Zhu,Zhen Chen,Yixuan Yuan
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 102990-102990 被引量:4
标识
DOI:10.1016/j.media.2023.102990
摘要

The fusion of multi-modal data, e.g., pathology slides and genomic profiles, can provide complementary information and benefit glioma grading. However, genomic profiles are difficult to obtain due to the high costs and technical challenges, thus limiting the clinical applications of multi-modal diagnosis. In this work, we investigate the realistic problem where paired pathology-genomic data are available during training, while only pathology slides are accessible for inference. To solve this problem, a comprehensive learning and adaptive teaching framework is proposed to improve the performance of pathological grading models by transferring the privileged knowledge from the multi-modal teacher to the pathology student. For comprehensive learning of the multi-modal teacher, we propose a novel Saliency-Aware Masking (SA-Mask) strategy to explore richer disease-related features from both modalities by masking the most salient features. For adaptive teaching of the pathology student, we first devise a Local Topology Preserving and Discrepancy Eliminating Contrastive Distillation (TDC-Distill) module to align the feature distributions of the teacher and student models. Furthermore, considering the multi-modal teacher may include incorrect information, we propose a Gradient-guided Knowledge Refinement (GK-Refine) module that builds a knowledge bank and adaptively absorbs the reliable knowledge according to their agreement in the gradient space. Experiments on the TCGA GBM-LGG dataset show that our proposed distillation framework improves the pathological glioma grading and outperforms other KD methods. Notably, with the sole pathology slides, our method achieves comparable performance with existing multi-modal methods. The code is available at https://github.com/CUHK-AIM-Group/MultiModal-learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好斓发布了新的文献求助10
刚刚
xixi关注了科研通微信公众号
刚刚
赘婿应助xjp采纳,获得10
1秒前
上官若男应助xjp采纳,获得10
1秒前
2秒前
tk完成签到 ,获得积分10
2秒前
Louis发布了新的文献求助10
3秒前
3秒前
良辰应助美好斓采纳,获得10
5秒前
情怀应助踏实的念柏采纳,获得10
5秒前
cranberry完成签到,获得积分10
6秒前
6秒前
小桔青山完成签到,获得积分10
7秒前
青红造了个白应助liyu采纳,获得10
7秒前
7秒前
8秒前
CipherSage应助马尼拉采纳,获得10
8秒前
豪哥发布了新的文献求助10
8秒前
FDD发布了新的文献求助10
8秒前
ben226完成签到,获得积分20
8秒前
9秒前
9秒前
wrx完成签到,获得积分10
9秒前
烂漫的化蛹完成签到,获得积分10
10秒前
李九月发布了新的文献求助10
10秒前
12秒前
英姑应助明天采纳,获得30
12秒前
唐笑发布了新的文献求助10
12秒前
wrx发布了新的文献求助10
12秒前
彭于晏应助哼哼采纳,获得10
12秒前
xjp发布了新的文献求助10
13秒前
NexusExplorer应助发发采纳,获得10
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
科研通AI5应助ARIA采纳,获得10
15秒前
ben226发布了新的文献求助30
16秒前
缥缈幻翠发布了新的文献求助10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Mechanochemistry of Solid Surfaces 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806767
求助须知:如何正确求助?哪些是违规求助? 3351517
关于积分的说明 10354367
捐赠科研通 3067322
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809699
科研通“疑难数据库(出版商)”最低求助积分说明 765606