计算
折射率
无定形固体
量子计算机
吞吐量
计算机科学
聚合物
人工神经网络
图形
计算科学
材料科学
量子
人工智能
光电子学
算法
理论计算机科学
物理
化学
复合材料
量子力学
电信
有机化学
无线
作者
Ankit Mishra,Pankaj Rajak,Ayu Irie,Shogo Fukushima,Rajiv K. Kalia,Aiichiro Nakano,Ken‐ichi Nomura,Fuyuki Shimojo,Priya Vashishta
摘要
Refractive index (RI) of polymers plays a crucial role in the design of optoelectronic devices, including displays and image sensors. We have developed a framework for (1) high-throughput computation of RI values for computationally synthesized amorphous polymer structures based on a generalized polarizable reactive force-field (ReaxPQ+) model, which is orders-of-magnitude faster than quantum-mechanical methods; (2) prediction of composition–structure–RI relationships based on a machine-learning model based on graph attention neural network; and (3) computation of frequency-dependent RI combining ReaxPQ+ and Lorentz-oscillator models. The framework has been tested on a computational database of amorphous polymers.
科研通智能强力驱动
Strongly Powered by AbleSci AI