Prediction of lymph node metastasis in primary gastric cancer from pathological images and clinical data by multimodal multiscale deep learning

医学 癌症 接收机工作特性 病态的 深度学习 放射科 淋巴结转移 活检 淋巴结 放大倍数 转移 内科学 肿瘤科 人工智能 计算机科学
作者
Zhechen Guo,Junlin Lan,Jianchao Wang,Ziwei Hu,Zhida Wu,Jiawei Quan,Zixin Han,Tao Wang,Ming Du,Qinquan Gao,Yuyang Xue,Tong Tong,Gang Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105336-105336 被引量:4
标识
DOI:10.1016/j.bspc.2023.105336
摘要

Gastric cancer is the third most common cause of cancer-related death. Accurate preoperative prediction of lymph node metastasis (LNM) in primary gastric cancer strongly influences the choice of surgical approach and the prognosis of gastric cancer patients. To develop and validate a deep learning-based model to analyze routine histological slides of patients with primary gastric cancer as well as clinical data to predict the occurrence of LNM preoperatively. Radical surgery slides from 309 patients and biopsy slides from 157 patients were collected from Fujian Cancer Hospital, along with radical surgery slides from 306 patients from The Cancer Genome Atlas (TCGA). Clinical data, including age, gender, lauren classification, and tumor location, were collected. These datasets were used to develop and validate a deep learning-based model. Five models were trained via cross-validation, with a mean area under the receiver operating characteristic curve (AUC) (standard deviation [SD]) of 0.877 (0.048) achieved. There was a significant difference in scores between both classes (LNM positive [N+] and LNM negative [N0]) ( p<0.001). we validated the performance of the model on biopsy slides and achieved a mean AUC (SD) of 0.725 (0.020). In the analysis of clinical data, the lauren classification was demonstrated to be an independent risk factor for predicting LNM. Our study confirmed that deep learning-based image analysis could preoperatively predict LNM in patients with primary gastric cancer, combining histological slides at different magnification scales and relevant clinical data, showing superiority over individual modality prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小趴蔡采纳,获得30
6秒前
7秒前
犹豫雅寒完成签到 ,获得积分20
8秒前
8秒前
丘比特应助疯狂的石头采纳,获得10
10秒前
小满完成签到,获得积分20
10秒前
qiqi1111发布了新的文献求助10
10秒前
14秒前
浮游应助迷路寄容采纳,获得10
14秒前
14秒前
今后应助小满采纳,获得10
14秒前
浮游应助老毛采纳,获得10
14秒前
klyang应助醉熏的伊采纳,获得40
15秒前
16秒前
baolong发布了新的文献求助10
17秒前
whardon发布了新的文献求助30
19秒前
李迅迅发布了新的文献求助10
20秒前
21秒前
22秒前
23秒前
123456qi完成签到,获得积分10
23秒前
23秒前
24秒前
疯狂的石头完成签到,获得积分10
24秒前
whardon完成签到,获得积分10
25秒前
橙啊程完成签到 ,获得积分10
25秒前
斯文败类应助实验耗材采纳,获得10
25秒前
明翔完成签到,获得积分10
25秒前
柴ZL发布了新的文献求助10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
阿良完成签到,获得积分10
25秒前
25秒前
华仔应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312188
求助须知:如何正确求助?哪些是违规求助? 4455976
关于积分的说明 13864983
捐赠科研通 4344392
什么是DOI,文献DOI怎么找? 2385837
邀请新用户注册赠送积分活动 1380209
关于科研通互助平台的介绍 1348565