人工智能
计算机科学
学习迁移
特征(语言学)
领域(数学分析)
相似性(几何)
图像(数学)
编码器
特征向量
上下文图像分类
机器学习
模式识别(心理学)
数学
操作系统
数学分析
哲学
语言学
作者
Anirudh Potlapally,Shubham Mahajan,Michael Briden,Harrison Shawa,Andrea Medina Lopez,Daniel Yoon,Amir Mazaheri,Hsin‐ya Yang,Sara E. Dahle,R. Rivkah Isseroff,Narges Norouzi
标识
DOI:10.1109/isbi53787.2023.10230601
摘要
Early detection of whether a wound is a "healer" or a "non-healer" using image analysis enables healthcare professionals to administer appropriate interventions. We propose a few-shot wound healing assessment framework, WoundNet, to classify temporal wound image sequences as "healer" or "non-healer." The contributions of this work are twofold: 1) Meta-learning: We study transfer learning approaches to train an image encoder for enhanced feature learning using domain adaption and contrastive learning, and 2) Few-shot classification: We classify image embeddings based on latent space similarity. We analyze the performance of the WoundNet framework in various settings, and experimental results show that temporal wound image sequences can be classified with an accuracy of up to 92%.
科研通智能强力驱动
Strongly Powered by AbleSci AI