亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Linear Subspace Surrogate Modeling for Large-Scale Expensive Single/Multi-Objective Optimization

替代模型 线性子空间 子空间拓扑 数学优化 计算机科学 最优化问题 可行区 线性规划 遗传算法 数学 算法 人工智能 几何学
作者
Langchun Si,Xingyi Zhang,Ye Tian,Shangshang Yang,Limiao Zhang,Yaochu Jin
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:15
标识
DOI:10.1109/tevc.2023.3319640
摘要

Despite that the surrogate-assisted evolutionary algorithms have achieved great success in addressing expensive optimization problems, they still suffer from stiff challenges when the number of dimensions of problems becomes large. The primary reason lies in that it is very hard to build an acceptable surrogate model in the high-dimensional search space with small amounts of evaluated historical data in evolution. To tackle this issue, we suggest an effective surrogate modeling method for large-scale expensive optimization in this paper, where the models are built on a number of linear subspaces instead of the original search space. Specifically, a linear subspace is constructed by a pair of points/solutions which are generated based on the set of elite solutions. For each linear subspace, several historical solutions are first associated according to their distance to the linear subspace, and then a surrogate model is trained by the associated solutions and used to evaluate the offspring. To ensure the exploration and exploitation capacity of the proposed method, these linear subspaces and the surrogate models are updated after a few iterations. Experimental results on CEC'2010 and CEC'2013 single-objective optimization problems with up to 1500 decision variables show that the proposed algorithm is superior over six comparison algorithms. Moreover, we also extend the proposed algorithm to multi-objective optimization problems and verified its competitiveness on problems with up to 1500 decision variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
xxx发布了新的文献求助10
9秒前
嵐酱布响堪论文完成签到,获得积分10
18秒前
Jessica完成签到,获得积分10
31秒前
48秒前
1分钟前
aa111发布了新的文献求助10
1分钟前
完美世界应助aa111采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
maher应助科研通管家采纳,获得30
2分钟前
ZYP应助科研通管家采纳,获得10
2分钟前
2分钟前
科研启动发布了新的文献求助30
2分钟前
2分钟前
酷波er应助yahaahaaoo采纳,获得10
2分钟前
科研启动完成签到,获得积分10
2分钟前
科研通AI6应助xxx采纳,获得10
3分钟前
自信号厂完成签到 ,获得积分0
3分钟前
领导范儿应助nikuisi采纳,获得10
3分钟前
3分钟前
wew发布了新的文献求助10
3分钟前
3分钟前
朴素的山蝶完成签到 ,获得积分10
3分钟前
wangfaqing942完成签到 ,获得积分10
3分钟前
陌路人发布了新的文献求助10
3分钟前
ele_yuki完成签到,获得积分10
3分钟前
4分钟前
nikuisi发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
mm应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568049
关于积分的说明 14312357
捐赠科研通 4493975
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426221