A nonlinear structural pulse-like seismic response prediction method based on pulse-like identification and decomposition learning

分解 脉搏(音乐) 非线性系统 计算机科学 脉冲整形 鉴定(生物学) 非线性系统辨识 生物系统 系统标识 光学 数据挖掘 物理 化学 有机化学 度量(数据仓库) 激光器 植物 量子力学 电信 生物 探测器
作者
Bo Liu,Qiang Xu,Jianyun Chen,Yin Wang,Jiansheng Chen,Tianran Zhang
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:33 (10): 105008-105008 被引量:1
标识
DOI:10.1088/1361-665x/ad742d
摘要

Abstract Accurate and fast prediction of structural response under seismic action is important for structural performance assessment, however, existing deep learning-based prediction methods do not consider the effect of pulse characteristics of near-fault pulse-like ground motions on structural response. To address the above issues, a new method based on wavelet decomposition and attention mechanism-enhanced decomposition learning, i.e. WD–AttDL, is proposed in this study to predict structural response under pulse-like ground motions. This method innovatively combines a WD-based velocity pulse-identification method with decomposition learning, where decomposed pulses and high-frequency features are used as inputs to the neural-network model, thus simplifying the identification of pulse features for the model. The decomposition learning model integrates several types of neural network components such as convolutional neural network feature extraction submodule, long short-term memory neural network temporal learning submodule and self-attention mechanism submodule. In order to verify the accuracy and validity of the proposed methodology, three sets of case studies were carried out, including elasto-plastic time-history analyses of planar reinforced concrete (RC) frame structures, a three-dimensional RC frame structure, and two types of masonry seismic isolation structures. Compared with existing structural seismic response models, WD–AttDL synergistically integrates the advantages of different modules and thus offers a higher prediction accuracy. In particular, it reduces the peak error of the predicted response, which is important for the evaluation of structural performance. In addition, WD–AttDL has a great potential for application in fast vulnerability and reliability analysis of pulse-like earthquakes in nonlinear structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
匆匆而过完成签到 ,获得积分10
刚刚
醉熏的问夏完成签到 ,获得积分10
刚刚
jiangnan发布了新的文献求助10
刚刚
刚刚
文迪完成签到,获得积分10
1秒前
科研通AI2S应助李笑采纳,获得10
1秒前
18621058639完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
6秒前
迷路的书南应助果子采纳,获得10
6秒前
酸酸完成签到 ,获得积分10
7秒前
向阳发布了新的文献求助10
7秒前
大模型应助chengzi采纳,获得10
8秒前
吴荣菲发布了新的文献求助10
8秒前
研友_Lw4Ngn完成签到,获得积分10
8秒前
蓝莓完成签到,获得积分10
8秒前
8秒前
咕咚咕咚完成签到,获得积分10
9秒前
SYLH完成签到,获得积分0
9秒前
顾矜应助LANKE采纳,获得10
11秒前
白色花海完成签到,获得积分10
11秒前
慕青应助Nhiii采纳,获得10
12秒前
papertanchishe完成签到,获得积分10
12秒前
DONG发布了新的文献求助30
13秒前
桐桐应助zhaojrr采纳,获得10
14秒前
miao关注了科研通微信公众号
14秒前
隐形曼青应助qqqqqqq采纳,获得10
15秒前
哈哈哈6056发布了新的文献求助10
15秒前
16秒前
隐形曼青应助无限的宫苴采纳,获得10
17秒前
17秒前
吕万鹏完成签到,获得积分10
17秒前
21秒前
充电宝应助sdl采纳,获得10
21秒前
Junsir发布了新的文献求助10
22秒前
情怀应助美丽晓蓝采纳,获得10
22秒前
清秀台灯发布了新的文献求助10
22秒前
彭于晏应助向阳采纳,获得10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
SQL vs NoSQL: Six Systems Compared 401
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796582
求助须知:如何正确求助?哪些是违规求助? 3341785
关于积分的说明 10307798
捐赠科研通 3058389
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805918
科研通“疑难数据库(出版商)”最低求助积分说明 762841