Hemodynamic predictors of cerebral aneurysm rupture: A machine learning approach

物理 血流动力学 动脉瘤 心脏病学 内科学 医学 放射科
作者
Mostafa Zakeri,Mohammad Aziznia,A. Atef,Azadeh Jafari
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0224289
摘要

Cerebral aneurysms, a common yet silent condition, affect many people worldwide. Proper treatment selection is crucial because the disease's severity guides the course of treatment. An aneurysm in the Circle of Willis is particularly concerning due to its potential for rupture, leading to severe consequences. This study aims to predict the rupture status of cerebral aneurysms using a comprehensive dataset of clinical and hemodynamic data from blood flow simulations in real three-dimensional geometries from past patients. The Carreau–Yasuda model was used to capture the effects of shear thinning, considering blood as a non-Newtonian fluid that affects the hemodynamic properties of each patient. This research provides insights to aid treatment decisions and potentially save lives. Diagnosing and predicting aneurysm rupture based solely on brain scans is challenging and unreliable. However, statistical methods and machine learning (ML) techniques can help physicians make more confident predictions and select appropriate treatments. We used five ML algorithms trained on a database of 708 cerebral aneurysms, including three clinical features and 17 hemodynamic parameters. Unlike previous studies that used fewer parameters, our comprehensive prediction approach improved prediction accuracy. Our models achieved a maximum accuracy and precision of 0.79 and a recall rate of 0.92. Given the condition's critical nature, recall is more vital than accuracy and precision, and this study achieved a fair recall score. Key features for predicting aneurysm rupture included aneurysm location, low shear area ratio, relative residence time, and turnover time, which significantly contributed to our understanding of this complex condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懦弱的叫兽完成签到 ,获得积分10
刚刚
caicainuegou发布了新的文献求助10
1秒前
科研通AI5应助lune采纳,获得10
3秒前
4秒前
4秒前
4秒前
8秒前
静汉发布了新的文献求助10
8秒前
黎明完成签到,获得积分10
8秒前
大恩区发布了新的文献求助20
9秒前
10秒前
11秒前
陈醒醒完成签到,获得积分10
14秒前
杨冰发布了新的文献求助10
15秒前
Augusterny完成签到 ,获得积分10
15秒前
小马甲应助莫问今生采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
鱼王木木发布了新的文献求助10
16秒前
谦让小松鼠完成签到,获得积分10
16秒前
16秒前
17秒前
阔达的夏槐完成签到,获得积分20
17秒前
静汉完成签到,获得积分10
17秒前
19秒前
zxzb发布了新的文献求助10
21秒前
研友_VZG7GZ应助你hao采纳,获得10
21秒前
22秒前
lune发布了新的文献求助10
23秒前
25秒前
诸葛御风应助吴DrYDYY采纳,获得20
26秒前
zzz发布了新的文献求助10
26秒前
27秒前
27秒前
花开米兰城完成签到,获得积分10
28秒前
细心采蓝发布了新的文献求助30
29秒前
30秒前
你hao发布了新的文献求助10
31秒前
32秒前
32秒前
Hello应助吴子冰采纳,获得10
34秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864604
求助须知:如何正确求助?哪些是违规求助? 3406976
关于积分的说明 10652259
捐赠科研通 3130961
什么是DOI,文献DOI怎么找? 1726714
邀请新用户注册赠送积分活动 831961
科研通“疑难数据库(出版商)”最低求助积分说明 780064