Hemodynamic predictors of cerebral aneurysm rupture: A machine learning approach

物理 血流动力学 动脉瘤 心脏病学 内科学 医学 放射科
作者
Mostafa Zakeri,Mohammad Aziznia,A. Atef,Azadeh Jafari
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0224289
摘要

Cerebral aneurysms, a common yet silent condition, affect many people worldwide. Proper treatment selection is crucial because the disease's severity guides the course of treatment. An aneurysm in the Circle of Willis is particularly concerning due to its potential for rupture, leading to severe consequences. This study aims to predict the rupture status of cerebral aneurysms using a comprehensive dataset of clinical and hemodynamic data from blood flow simulations in real three-dimensional geometries from past patients. The Carreau–Yasuda model was used to capture the effects of shear thinning, considering blood as a non-Newtonian fluid that affects the hemodynamic properties of each patient. This research provides insights to aid treatment decisions and potentially save lives. Diagnosing and predicting aneurysm rupture based solely on brain scans is challenging and unreliable. However, statistical methods and machine learning (ML) techniques can help physicians make more confident predictions and select appropriate treatments. We used five ML algorithms trained on a database of 708 cerebral aneurysms, including three clinical features and 17 hemodynamic parameters. Unlike previous studies that used fewer parameters, our comprehensive prediction approach improved prediction accuracy. Our models achieved a maximum accuracy and precision of 0.79 and a recall rate of 0.92. Given the condition's critical nature, recall is more vital than accuracy and precision, and this study achieved a fair recall score. Key features for predicting aneurysm rupture included aneurysm location, low shear area ratio, relative residence time, and turnover time, which significantly contributed to our understanding of this complex condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助qinyu采纳,获得10
刚刚
yiyiyi发布了新的文献求助10
1秒前
1秒前
2秒前
ZR666888完成签到,获得积分10
3秒前
okghy发布了新的文献求助10
4秒前
4秒前
王萍23333发布了新的文献求助10
5秒前
6秒前
7秒前
龍咳发布了新的文献求助10
8秒前
小慈爱鸡发布了新的文献求助10
9秒前
豆浆烩面发布了新的文献求助10
10秒前
吱哦周完成签到,获得积分10
11秒前
风中寄灵完成签到,获得积分10
11秒前
LLLLLLF完成签到 ,获得积分10
12秒前
SYLH应助CJ采纳,获得10
14秒前
彭于晏应助shadow采纳,获得10
14秒前
风中寄灵发布了新的文献求助10
15秒前
16秒前
领导范儿应助swtdna采纳,获得10
16秒前
Andy完成签到,获得积分10
16秒前
17秒前
852应助Animagus采纳,获得10
18秒前
18秒前
18秒前
Akim应助yiyiyi采纳,获得10
18秒前
852应助刘一一采纳,获得10
19秒前
章英健发布了新的文献求助10
21秒前
21秒前
21秒前
王王的狗子完成签到 ,获得积分10
21秒前
orixero应助酷炫半蕾采纳,获得10
22秒前
在水一方应助小胖胖采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
谨慎初曼完成签到,获得积分10
24秒前
青衣发布了新的文献求助10
24秒前
李健应助咩咩采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
War and Peace in the Borderlands of Myanmar: The Kachin Ceasefire, 1994-2011 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4141515
求助须知:如何正确求助?哪些是违规求助? 3677856
关于积分的说明 11625441
捐赠科研通 3371628
什么是DOI,文献DOI怎么找? 1852091
邀请新用户注册赠送积分活动 914927
科研通“疑难数据库(出版商)”最低求助积分说明 829551