A novel block‐coordinate gradient descent algorithm for simultaneous grouped selection of fixed and random effects in joint modeling

随机效应模型 协变量 维数之咒 协方差 计算机科学 混合模型 坐标下降 固定效应模型 算法 数学 块(置换群论) 统计 面板数据 医学 荟萃分析 几何学 内科学
作者
Shuyan Chen,Zhiqing Fang,Zhong Li,Xin Liu
出处
期刊:Statistics in Medicine [Wiley]
卷期号:43 (23): 4595-4613
标识
DOI:10.1002/sim.10193
摘要

Joint models for longitudinal and time‐to‐event data are receiving increasing attention owing to its capability of capturing the possible association between these two types of data. Typically, a joint model consists of a longitudinal submodel for longitudinal processes and a survival submodel for the time‐to‐event response, and links two submodels by common covariates that may carry both fixed and random effects. However, research gaps still remain on how to simultaneously select fixed and random effects from the two submodels under the joint modeling framework efficiently and effectively. In this article, we propose a novel block‐coordinate gradient descent (BCGD) algorithm to simultaneously select multiple longitudinal covariates that may carry fixed and random effects in the joint model. Specifically, for the multiple longitudinal processes, a linear mixed effect model is adopted where random intercepts and slopes serve as essential covariates of the trajectories, and for the survival submodel, the popular proportional hazard model is employed. A penalized likelihood estimation is used to control the dimensionality of covariates in the joint model and estimate the unknown parameters, especially when estimating the covariance matrix of random effects. The proposed BCGD method can successfully capture the useful covariates of both fixed and random effects with excellent selection power, and efficiently provide a relatively accurate estimate of fixed and random effects empirically. The simulation results show excellent performance of the proposed method and support its effectiveness. The proposed BCGD method is further applied on two real data sets, and we examine the risk factors for the effects of different heart valves, differing on type of tissue, implanted in the aortic position and the risk factors for the diagnosis of primary biliary cholangitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2233发布了新的文献求助10
刚刚
1秒前
my发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
5秒前
KD发布了新的文献求助10
5秒前
斯文败类应助euy采纳,获得10
6秒前
wddfz发布了新的文献求助10
6秒前
7秒前
7秒前
自由可兰完成签到 ,获得积分10
7秒前
科研通AI5应助Caitutu采纳,获得10
8秒前
Brian发布了新的文献求助10
8秒前
tRNA完成签到 ,获得积分10
9秒前
浅浅蓝发布了新的文献求助10
10秒前
朴素若枫发布了新的文献求助10
11秒前
格瑞格完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
救救scori完成签到,获得积分10
12秒前
脑洞疼应助咩咩采纳,获得10
13秒前
13秒前
爆米花应助aka鱼鱼鱼采纳,获得10
14秒前
15秒前
16秒前
17秒前
tonyguo完成签到,获得积分10
18秒前
朴素若枫完成签到,获得积分10
20秒前
LaiZiwen发布了新的文献求助10
20秒前
euy发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
23秒前
此间少年郎完成签到 ,获得积分10
24秒前
xuan完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
ccmxigua发布了新的文献求助10
28秒前
28秒前
今后应助胡萝卜采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048792
求助须知:如何正确求助?哪些是违规求助? 4277060
关于积分的说明 13332258
捐赠科研通 4091605
什么是DOI,文献DOI怎么找? 2239138
邀请新用户注册赠送积分活动 1246031
关于科研通互助平台的介绍 1174599