A novel block‐coordinate gradient descent algorithm for simultaneous grouped selection of fixed and random effects in joint modeling

随机效应模型 协变量 维数之咒 协方差 计算机科学 混合模型 坐标下降 固定效应模型 算法 数学 块(置换群论) 统计 面板数据 内科学 荟萃分析 医学 几何学
作者
Shuyan Chen,Zhiqing Fang,Zhong Li,Xin Liu
出处
期刊:Statistics in Medicine [Wiley]
卷期号:43 (23): 4595-4613
标识
DOI:10.1002/sim.10193
摘要

Joint models for longitudinal and time‐to‐event data are receiving increasing attention owing to its capability of capturing the possible association between these two types of data. Typically, a joint model consists of a longitudinal submodel for longitudinal processes and a survival submodel for the time‐to‐event response, and links two submodels by common covariates that may carry both fixed and random effects. However, research gaps still remain on how to simultaneously select fixed and random effects from the two submodels under the joint modeling framework efficiently and effectively. In this article, we propose a novel block‐coordinate gradient descent (BCGD) algorithm to simultaneously select multiple longitudinal covariates that may carry fixed and random effects in the joint model. Specifically, for the multiple longitudinal processes, a linear mixed effect model is adopted where random intercepts and slopes serve as essential covariates of the trajectories, and for the survival submodel, the popular proportional hazard model is employed. A penalized likelihood estimation is used to control the dimensionality of covariates in the joint model and estimate the unknown parameters, especially when estimating the covariance matrix of random effects. The proposed BCGD method can successfully capture the useful covariates of both fixed and random effects with excellent selection power, and efficiently provide a relatively accurate estimate of fixed and random effects empirically. The simulation results show excellent performance of the proposed method and support its effectiveness. The proposed BCGD method is further applied on two real data sets, and we examine the risk factors for the effects of different heart valves, differing on type of tissue, implanted in the aortic position and the risk factors for the diagnosis of primary biliary cholangitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆冰双完成签到,获得积分10
刚刚
易波折完成签到,获得积分10
1秒前
李健的小迷弟应助Charlie采纳,获得10
2秒前
赵欣发布了新的文献求助10
2秒前
3秒前
Nostalgia发布了新的文献求助20
4秒前
wanci应助Cheryy采纳,获得10
5秒前
脑洞疼应助猫的树采纳,获得10
5秒前
欣喜眼神发布了新的文献求助10
6秒前
赵欣发布了新的文献求助30
6秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
宴之思完成签到,获得积分10
9秒前
10秒前
天天快乐应助欣喜眼神采纳,获得10
10秒前
笑点低的衬衫给笑点低的衬衫的求助进行了留言
11秒前
fhl发布了新的文献求助10
12秒前
14秒前
Silence发布了新的文献求助50
14秒前
康康发布了新的文献求助10
15秒前
lyouang完成签到,获得积分10
16秒前
16秒前
16秒前
冰魂应助gg采纳,获得10
16秒前
17秒前
18秒前
19秒前
刚子完成签到 ,获得积分10
19秒前
Bu发布了新的文献求助10
19秒前
20秒前
碧蓝梦容发布了新的文献求助10
20秒前
20秒前
思源应助flymove采纳,获得10
21秒前
天天快乐应助pharmstudent采纳,获得10
21秒前
大模型应助fhl采纳,获得10
21秒前
ls沈小天发布了新的文献求助10
22秒前
林曳完成签到,获得积分10
22秒前
传奇3应助雪原火狐采纳,获得10
23秒前
顺利兰发布了新的文献求助10
24秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866846
求助须知:如何正确求助?哪些是违规求助? 3409198
关于积分的说明 10662139
捐赠科研通 3133354
什么是DOI,文献DOI怎么找? 1728165
邀请新用户注册赠送积分活动 832728
科研通“疑难数据库(出版商)”最低求助积分说明 780407