Fair-RGNN: Mitigating Relational Bias on Knowledge Graphs

计算机科学 借记 统计关系学习 关系数据库 理论计算机科学 图形 特征学习 机器学习 知识图 数据挖掘 数据科学 人工智能 心理学 认知科学
作者
Yu-Neng Chuang,Kwei-Herng Lai,Ruixiang Tang,Mengnan Du,Chia-Yuan Chang,Na Zou,Xia Hu
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3681792
摘要

Knowledge graph data are prevalent in real-world applications, and knowledge graph neural networks (KGNNs) are essential techniques for knowledge graph representation learning. Although KGNN effectively models the structural information from knowledge graphs, these frameworks amplify the underlying data bias that leads to discrimination towards certain groups or individuals in resulting applications. Additionally, as existing debiasing approaches mainly focus on entity-wise bias, eliminating the multi-hop relational bias that pervasively exists in knowledge graphs remains an open question. However, it is very challenging to eliminate relational bias due to the sparsity of the paths that generate the bias and the non-linear proximity structure of knowledge graphs. To tackle the challenges, we propose Fair-KGNN, a KGNN framework that simultaneously alleviates multi-hop bias and preserves the proximity information of entity-to-relation in knowledge graphs. The proposed framework is generalizable to mitigate relational bias for all types of KGNN. Fair-KGNN is applicable to incorporate two stateof- the-art KGNN models, RGCN and CompGCN, to mitigate gender-occupation and nationality-salary bias. The experiments carried out on three benchmark knowledge graph datasets demonstrate that Fair-KGNN can effectively mitigate unfair situations during representation learning while preserving the predictive performance of KGNN models. The source code of the proposed method is available at: https://github.com/ynchuang/Mitigating-Relational-Bias-on-Knowledge-Graphs .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助碧蓝巧荷采纳,获得20
2秒前
2秒前
体贴山彤完成签到,获得积分10
2秒前
不安青牛应助刻苦冰颜采纳,获得10
3秒前
4秒前
4秒前
筱筱完成签到,获得积分10
5秒前
5秒前
研友_VZG7GZ应助一一采纳,获得10
6秒前
6秒前
GERRARD发布了新的文献求助10
7秒前
7秒前
DT完成签到 ,获得积分10
9秒前
汉堡包应助C57的狂想采纳,获得10
10秒前
iperper发布了新的文献求助10
10秒前
QuJiahao发布了新的文献求助10
10秒前
10秒前
充电宝应助li采纳,获得10
12秒前
14秒前
幽灵发布了新的文献求助10
14秒前
14秒前
Luffa完成签到,获得积分10
14秒前
可靠的思烟完成签到,获得积分10
15秒前
CodeCraft应助李晨源采纳,获得10
16秒前
天天快乐应助喵喵采纳,获得10
16秒前
16秒前
赘婿应助燃之一手采纳,获得10
17秒前
18秒前
19秒前
bhappy21发布了新的文献求助10
19秒前
21秒前
21秒前
21秒前
22秒前
22秒前
彩色耳机发布了新的文献求助10
22秒前
欣慰友梅完成签到,获得积分10
23秒前
WY完成签到,获得积分10
23秒前
Good_小鬼完成签到,获得积分10
23秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4052208
求助须知:如何正确求助?哪些是违规求助? 3590281
关于积分的说明 11410319
捐赠科研通 3316908
什么是DOI,文献DOI怎么找? 1824425
邀请新用户注册赠送积分活动 896121
科研通“疑难数据库(出版商)”最低求助积分说明 817198