奥斯特瓦尔德成熟
氢铵
图层(电子)
离子
化学
电池(电)
化学工程
材料科学
无机化学
化学物理
纳米技术
有机化学
热力学
功率(物理)
物理
工程类
作者
Zhenzhen Zhao,Wei Zhang,Dong Wang,Lin Li,Qing Liang,Wenwen Li,Chang Lu,Seung Jo Yoo,Jin‐Gyu Kim,Zhongjun Chen,Yujin Li,Xu Zou,Fuxi Liu,Xinyan Zhou,Kexin Song,Jingjuan Li,Weitao Zheng
标识
DOI:10.1002/ange.202414420
摘要
Collapsing and degradation of active materials caused by the electrode/electrolyte interface instability in aqueous batteries are one of the main obstacles that mitigate the capacity. Herein by reversing the notorious side reactions include the loss and dissolution of electrode materials: as we applied Ostwald ripening (OR) in the electrochemical cycling of a copper hexacyanoferrate electrode in a hydronium‐ion batteries, the dissolved Cu and Fe ions undergo a crystallization process that creates a stable interface layer of cross‐linked cubes on the electrode surface. The layer exposed the low‐index crystal planes (100) and (110) through OR‐induced electrode particle growth, supplemented by vacancy‐ordered (100) superlattices that facilitated ion migration. Our design stabilized the electrode–electrolyte interface considerably, achieving a cycle life of one million cycles with capacity retention of 91.6%, and a capacity retention of 91.7% after 3000 cycles for a full battery.
科研通智能强力驱动
Strongly Powered by AbleSci AI