A Novel Ultrasound-Based Radiomics Model for the Preoperative Prediction of Lymph Node Metastasis in Cervical Cancer

医学 单变量 无线电技术 逻辑回归 单变量分析 Lasso(编程语言) 放射科 接收机工作特性 预测建模 宫颈癌 多元分析 多元统计 人工智能 癌症 机器学习 内科学 计算机科学 万维网
作者
Xianyue Yang,Yan Wang,Jingshu Zhang,Jinyan Yang,Fangfang Xu,Yun Liu,Chaoxue Zhang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:50 (12): 1793-1799 被引量:2
标识
DOI:10.1016/j.ultrasmedbio.2024.07.013
摘要

ObjectiveThe purpose of this retrospective study was to establish a combined model based on ultrasound (US)-radiomics and clinical factors to predict preoperative lymph node metastasis (LNM) in cervical cancer (CC) patients non-invasively.MethodsA total of 131 CC patients who had cervical lesions found by transvaginal sonography (TVS) from the First Affiliated Hospital of Anhui Medical University (Hefei, China) were retrospectively analyzed. The clinical independent predictors were selected using univariate and multivariate logistic regression analysis. US-radiomics features were extracted from US images; after selecting the most significant features by univariate analysis, Spearman's correlation analysis, and the least absolute shrinkage and selection operator (LASSO) algorithm; four machine-learning classification algorithms were used to build the US-radiomics model. Fivefold cross-validation was then used to test the performance of the model and compare the ability of the clinical, US-radiomics and combined models to predict LNM in CC patients.ResultsRed blood cell, platelet and squamous cell carcinoma-associated antigen were independent clinical predictors of LNM (+) in CC patients. eXtreme Gradient Boosting performed the best among the four machine-learning classification algorithms. Fivefold cross-validation confirmed that eXtreme Gradient Boosting indeed performs the best, with average area under the curve values in the training and validation sets of 0.897 and 0.898. In the three prediction models, both the US-radiomics model and the combined model showed good predictive efficacy, with average area under the curve values in the training and validation sets of 0.897, 0.898 and 0.912, 0.905, respectively.ConclusionUS-radiomics features combined with clinical factors can preoperatively predict LNM in CC patients non-invasively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
隐形曼青应助引商刻羽采纳,获得10
1秒前
啵啵发布了新的文献求助10
1秒前
飘逸雁梅完成签到,获得积分10
1秒前
FashionBoy应助ff采纳,获得10
2秒前
4秒前
科研通AI6应助务实青亦采纳,获得10
5秒前
DrDong98发布了新的文献求助10
6秒前
7秒前
8秒前
科研通AI2S应助lxsll采纳,获得10
8秒前
8秒前
叶xr发布了新的文献求助30
9秒前
9秒前
qinggui127完成签到 ,获得积分10
10秒前
11秒前
谢慧蕴发布了新的文献求助10
13秒前
13秒前
13秒前
枕上诗书发布了新的文献求助10
14秒前
打打应助xxxhhh采纳,获得10
14秒前
qinggui127关注了科研通微信公众号
14秒前
HHHHTTTT完成签到,获得积分10
14秒前
疯狂的醉蝶完成签到 ,获得积分10
15秒前
无情凡桃发布了新的文献求助10
16秒前
CipherSage应助cndxh采纳,获得10
16秒前
16秒前
16秒前
17秒前
EJSA发布了新的文献求助10
18秒前
韩希发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
yy123发布了新的文献求助10
20秒前
21秒前
Hq发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739366
求助须知:如何正确求助?哪些是违规求助? 4090724
关于积分的说明 12654039
捐赠科研通 3800150
什么是DOI,文献DOI怎么找? 2098475
邀请新用户注册赠送积分活动 1123930
科研通“疑难数据库(出版商)”最低求助积分说明 999140