Enhanced performance of graphene-incorporated electrodes for solid-state lithium-sulfur batteries through facilitated ionic diffusion pathways

石墨烯 锂(药物) 扩散 电极 离子键合 硫黄 锂硫电池 材料科学 化学工程 电化学 固态 无机化学 纳米技术 化学 离子 有机化学 物理化学 冶金 医学 物理 内分泌学 工程类 热力学
作者
Abdulkadir Kızılaslan,Çağrı Gökhan Türk,Akira Miura,Kiyoharu Tadanaga
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:496: 153588-153588
标识
DOI:10.1016/j.cej.2024.153588
摘要

Significant progress has been achieved in advancing all-solid-state lithium-sulfur batteries through the development of sulfide solid electrolytes. Nonetheless, a challenge lies in creating a percolated ion–electron conduction path with intimate contact between charge carriers throughout the cathode which is crucial for enhancing overall efficiency and addressing issues related to slow kinetics and impedance during battery operation. This study introduces a framework elucidating how the integration of graphene enhances electrode performance by refining ionic diffusion pathways. An idealized ionic diffusion pathway characterized by a continuous ionic network, facilitating minimum diffusion distances, is proposed. Through a parametric study substituting portions of ionic and electronic conductive agents with graphene, the impact on total ionic and electronic conductivity of positive electrodes was comprehended. The findings underscore the critical role of optimum graphene content, which fills the gaps between ionic conductive materials and creates the shortest diffusion paths for ions and electrons. While incorporating graphene into cathode electrodes is not novel, it is noteworthy that graphene, as a mixed ion–electron conductive material, significantly enhances ion mobility due to its 2D structure, addressing a crucial aspect of cathode performance. Upon achieving optimum composite formulation, empirical findings demonstrate substantial performance improvement, including a 17.7% increase in initial capacity and a remarkable 21% enhancement in capacity retention compared to electrodes without graphene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
得一发布了新的文献求助10
2秒前
SciGPT应助LLM采纳,获得10
3秒前
4秒前
汉堡包应助暴躁的冰旋采纳,获得10
4秒前
4秒前
dagongren完成签到,获得积分10
5秒前
KT发布了新的文献求助10
6秒前
iii完成签到,获得积分10
6秒前
木子发布了新的文献求助20
8秒前
9秒前
9秒前
研友_VZG7GZ应助Tolerance采纳,获得10
9秒前
科研通AI2S应助Zero140采纳,获得10
9秒前
QXR完成签到,获得积分10
9秒前
郭团团发布了新的文献求助10
10秒前
Yanzy完成签到,获得积分10
11秒前
大模型应助闾丘初阳采纳,获得10
11秒前
椋鸟应助金鱼采纳,获得10
11秒前
12秒前
隐形曼青应助GGBond采纳,获得10
13秒前
lcj发布了新的文献求助10
14秒前
14秒前
15秒前
熊大发布了新的文献求助10
15秒前
得一完成签到,获得积分10
15秒前
16秒前
元素搬运工完成签到,获得积分10
16秒前
布丁完成签到,获得积分10
17秒前
伶俐元芹完成签到,获得积分10
18秒前
shenerqing完成签到,获得积分10
19秒前
彩云追月发布了新的文献求助10
21秒前
miqiqi完成签到,获得积分10
21秒前
22秒前
25秒前
cdercder应助ljl采纳,获得10
26秒前
喜悦的飞机完成签到,获得积分10
26秒前
科研通AI5应助景绝义采纳,获得10
27秒前
章鱼星发布了新的文献求助10
28秒前
薛之谦完成签到,获得积分10
28秒前
冷傲的铃铛完成签到,获得积分20
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805187
求助须知:如何正确求助?哪些是违规求助? 3350199
关于积分的说明 10347652
捐赠科研通 3066052
什么是DOI,文献DOI怎么找? 1683485
邀请新用户注册赠送积分活动 809039
科研通“疑难数据库(出版商)”最低求助积分说明 765153