Research on Shape Memory Performance of TPI/PE Composite Materials

复合数 材料科学 复合材料
作者
Tao Zhang,Ruize Ma,Haohao Xu,Caihong Xue,Yurong Liang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4849022/v1
摘要

Abstract Triple shape memory materials have become a major research hotspot in recent years. Trans-1,4-polyisoprene (TPI) was mixed with inexpensive polyethylene (PE) in this work, and TPI/PE shape memory polymer composites (SMPCs) were vulcanized using the dynamic vulcanization process. PE can be divided into low-density polyethylene (LDPE) and high-density polyethylene (HDPE), both have the same structure but different molecular chain arrangement and density. Since the properties of SMPC are different due to the different ratios of TPI and PE components, choosing the right ratio is especially important for triple shape memory materials. We investigated the triple shape memory properties of composites of TPI with LDPE and TPI with HDPE at different ratios (8:2,7:3 and 6:4), respectively. The impact of the dynamic vulcanization system on the mechanical and shape memory characteristics of the TPI/PE hybrid SMPC was discovered through a sequence of studies. The results showed that when the ratio of TPI/PE was 8:2, the composites had the fastest vulcanization rate and the largest cross-linking degree with the highest tensile strength and mechanical properties. In addition, the test results show that the crystalline properties of HDPE-based composites are consistently higher than those of LDPE-based composites. The shape memory properties of TPI/HDPE composites are more excellent than those of TPI/LDPE composites at the same ratio. The best triple shape memory properties were obtained at a TPI/HDPE composite ratio of 8:2. We believe that the relevant findings of this study can provide a valuable design reference for the development of high-performance TPI shape memory materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫葵阴发布了新的文献求助10
刚刚
1秒前
1秒前
潇洒耷发布了新的文献求助10
2秒前
张文凯完成签到,获得积分10
3秒前
0456完成签到,获得积分10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
顾矜应助郝璐采纳,获得10
4秒前
bkagyin应助着急的一刀采纳,获得10
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
缓慢的孱应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
bb关闭了bb文献求助
4秒前
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
huracan完成签到,获得积分10
5秒前
Linn完成签到 ,获得积分10
6秒前
草莓发布了新的文献求助10
6秒前
6666发布了新的文献求助100
7秒前
搜集达人应助高贵的沧海采纳,获得10
9秒前
10秒前
jie酱拌面发布了新的文献求助10
10秒前
ZHTNL发布了新的文献求助10
11秒前
11秒前
zzz完成签到 ,获得积分10
12秒前
CipherSage应助xie采纳,获得30
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
Criminology34应助醉熏的烤鸡采纳,获得10
14秒前
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610351
求助须知:如何正确求助?哪些是违规求助? 4694821
关于积分的说明 14884565
捐赠科研通 4722012
什么是DOI,文献DOI怎么找? 2545111
邀请新用户注册赠送积分活动 1509931
关于科研通互助平台的介绍 1473042