Style transfer in conditional GANs for cross-modality synthesis of brain magnetic resonance images

模态(人机交互) 计算机科学 人工智能 图像合成 像素 相似性(几何) 模式识别(心理学) 磁共振成像 噪音(视频) 图像(数学) 放射科 医学
作者
Zhiwei Qin,Zhao Liu,Ping Zhu,Wenyuan Ling
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105928-105928 被引量:20
标识
DOI:10.1016/j.compbiomed.2022.105928
摘要

Magnetic resonance imaging (MRI) has become one of the most standardized and widely used neuroimaging protocols in the detection and diagnosis of neurodegenerative diseases. In clinical scenarios, multi-modality MR images can provide more comprehensive information than single modality images. However, high-quality multi-modality MR images can be difficult to obtain in the actual diagnostic process due to various uncertainties. Efficient methods of modality complement and synthesis have aroused increasing attention in the research community. In this article, style transfer is introduced into conditional generative adversarial networks (cGAN) architecture. A cGAN model with hierarchical feature mapping and fusion (ST-cGAN) is proposed to address the cross-modality synthesis of MR images. In order to surmount the sole focus on the pixel-wise similarity as most cGAN-based methods do, the proposed ST-cGAN takes advantage of the style information and applies it to the synthetic image's content structure. Taking images of two modalities as conditional input, ST-cGAN extracts different levels of style features and integrates them with the content features to form the style-enhanced synthetic image. Furthermore, the proposed model is made robust to random noise by adding noise input to the generator. A comprehensive analysis is performed by comparing the proposed ST-cGAN with other state-of-the-art baselines based on four representative evaluation metrics. The experimental results on the IXI (Information eXtraction from Images) dataset verify the validity of the ST-cGAN from different evaluation perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lee完成签到,获得积分10
1秒前
Loik发布了新的文献求助10
2秒前
王小小翔完成签到,获得积分10
2秒前
专一的忆寒完成签到,获得积分10
6秒前
6秒前
L1230完成签到,获得积分10
6秒前
7秒前
HMethod完成签到 ,获得积分10
7秒前
7秒前
王小奇完成签到,获得积分10
9秒前
9秒前
M先生发布了新的文献求助10
10秒前
kingkingwang2013完成签到,获得积分20
11秒前
12秒前
12秒前
张亚博发布了新的文献求助10
12秒前
ZCN发布了新的文献求助10
12秒前
实验员完成签到,获得积分20
13秒前
无奈的代珊完成签到 ,获得积分10
13秒前
zzz完成签到,获得积分10
14秒前
汉堡包应助假装有昵称采纳,获得10
14秒前
17秒前
完美世界应助张亚博采纳,获得10
19秒前
20秒前
从容芮应助李思超采纳,获得220
21秒前
成就关注了科研通微信公众号
21秒前
22秒前
22秒前
M先生完成签到,获得积分10
23秒前
实验员发布了新的文献求助10
28秒前
安然完成签到 ,获得积分10
28秒前
十八鱼发布了新的文献求助10
29秒前
柿花不是花完成签到 ,获得积分10
29秒前
30秒前
30秒前
123116011411完成签到,获得积分20
30秒前
WYN发布了新的文献求助10
30秒前
songurt完成签到,获得积分20
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5046306
求助须知:如何正确求助?哪些是违规求助? 4275478
关于积分的说明 13327315
捐赠科研通 4089494
什么是DOI,文献DOI怎么找? 2237791
邀请新用户注册赠送积分活动 1244871
关于科研通互助平台的介绍 1173052