Digital twin-driven deep reinforcement learning for adaptive task allocation in robotic construction

强化学习 任务(项目管理) 机器人 计算机科学 人工智能 人机交互 多样性(控制论) 分布式计算 工程类 系统工程
作者
Dongmin Lee,Sang Hyun Lee,Neda Masoud,Mayuram S. Krishnan,Victor C. Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:53: 101710-101710 被引量:75
标识
DOI:10.1016/j.aei.2022.101710
摘要

In order to accomplish diverse tasks successfully in a dynamic (i.e., changing over time) construction environment, robots should be able to prioritize assigned tasks to optimize their performance in a given state. Recently, a deep reinforcement learning (DRL) approach has shown potential for addressing such adaptive task allocation. It remains unanswered, however, whether or not DRL can address adaptive task allocation problems in dynamic robotic construction environments. In this paper, we developed and tested a digital twin-driven DRL learning method to explore the potential of DRL for adaptive task allocation in robotic construction environments. Specifically, the digital twin synthesizes sensory data from physical assets and is used to simulate a variety of dynamic robotic construction site conditions within which a DRL agent can interact. As a result, the agent can learn an adaptive task allocation strategy that increases project performance. We tested this method with a case project in which a virtual robotic construction project (i.e., interlocking concrete bricks are delivered and assembled by robots) was digitally twinned for DRL training and testing. Results indicated that the DRL model’s task allocation approach reduced construction time by 36% in three dynamic testing environments when compared to a rule-based imperative model. The proposed DRL learning method promises to be an effective tool for adaptive task allocation in dynamic robotic construction environments. Such an adaptive task allocation method can help construction robots cope with uncertainties and can ultimately improve construction project performance by efficiently prioritizing assigned tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
吕松洋完成签到,获得积分10
4秒前
4秒前
wu发布了新的文献求助10
4秒前
斯文败类应助Lcccc采纳,获得10
6秒前
高分子发布了新的文献求助10
6秒前
科研通AI5应助奥特曼采纳,获得30
7秒前
lsrlsr发布了新的文献求助10
8秒前
8秒前
9秒前
丰富山灵完成签到 ,获得积分10
9秒前
澹台灭明发布了新的文献求助10
9秒前
11秒前
华仔应助wu采纳,获得10
11秒前
12秒前
欧阳铭发布了新的文献求助10
12秒前
13秒前
13秒前
shi完成签到,获得积分10
13秒前
南北完成签到 ,获得积分10
14秒前
林间驳回了ding应助
15秒前
虚拟的如发布了新的文献求助30
15秒前
树藤完成签到,获得积分10
15秒前
YL0910发布了新的文献求助10
16秒前
Sunsets完成签到 ,获得积分10
16秒前
陌日遗迹完成签到,获得积分10
16秒前
风清扬发布了新的文献求助50
16秒前
17秒前
19秒前
李健应助DDo采纳,获得10
19秒前
20秒前
Mia完成签到,获得积分10
20秒前
FashionBoy应助lsrlsr采纳,获得10
20秒前
20秒前
宁宁完成签到,获得积分10
21秒前
xu完成签到 ,获得积分10
23秒前
23秒前
七喜发布了新的文献求助10
24秒前
大何发布了新的文献求助30
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4454954
求助须知:如何正确求助?哪些是违规求助? 3920948
关于积分的说明 12168511
捐赠科研通 3571392
什么是DOI,文献DOI怎么找? 1961609
邀请新用户注册赠送积分活动 1000812
科研通“疑难数据库(出版商)”最低求助积分说明 895710