Digital twin-driven deep reinforcement learning for adaptive task allocation in robotic construction

强化学习 任务(项目管理) 机器人 计算机科学 人工智能 人机交互 多样性(控制论) 分布式计算 工程类 系统工程
作者
Dongmin Lee,Sang Hyun Lee,Neda Masoud,Mayuram S. Krishnan,Victor C. Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:53: 101710-101710 被引量:75
标识
DOI:10.1016/j.aei.2022.101710
摘要

In order to accomplish diverse tasks successfully in a dynamic (i.e., changing over time) construction environment, robots should be able to prioritize assigned tasks to optimize their performance in a given state. Recently, a deep reinforcement learning (DRL) approach has shown potential for addressing such adaptive task allocation. It remains unanswered, however, whether or not DRL can address adaptive task allocation problems in dynamic robotic construction environments. In this paper, we developed and tested a digital twin-driven DRL learning method to explore the potential of DRL for adaptive task allocation in robotic construction environments. Specifically, the digital twin synthesizes sensory data from physical assets and is used to simulate a variety of dynamic robotic construction site conditions within which a DRL agent can interact. As a result, the agent can learn an adaptive task allocation strategy that increases project performance. We tested this method with a case project in which a virtual robotic construction project (i.e., interlocking concrete bricks are delivered and assembled by robots) was digitally twinned for DRL training and testing. Results indicated that the DRL model’s task allocation approach reduced construction time by 36% in three dynamic testing environments when compared to a rule-based imperative model. The proposed DRL learning method promises to be an effective tool for adaptive task allocation in dynamic robotic construction environments. Such an adaptive task allocation method can help construction robots cope with uncertainties and can ultimately improve construction project performance by efficiently prioritizing assigned tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助小岚乖乖采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得30
1秒前
诸葛御风应助科研通管家采纳,获得50
1秒前
LT发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
冰魂应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
桥豆麻袋应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
暗栀完成签到,获得积分10
2秒前
2秒前
Orange应助Cx330采纳,获得10
3秒前
lzs发布了新的文献求助10
3秒前
rong_w发布了新的文献求助10
3秒前
4秒前
4秒前
乏善可陈发布了新的文献求助10
4秒前
络桵完成签到,获得积分10
5秒前
ZL完成签到 ,获得积分10
5秒前
yoga_jiang发布了新的文献求助10
6秒前
斯文败类应助Justtry采纳,获得10
6秒前
underway发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
学吧完成签到,获得积分10
8秒前
8秒前
科目三应助奔跑西木采纳,获得10
8秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806325
求助须知:如何正确求助?哪些是违规求助? 3351096
关于积分的说明 10352817
捐赠科研通 3066979
什么是DOI,文献DOI怎么找? 1684207
邀请新用户注册赠送积分活动 809433
科研通“疑难数据库(出版商)”最低求助积分说明 765487