A CNN model based on innovative expansion operation improving the fault diagnosis accuracy of drilling pump fluid end

灰度 人工智能 断层(地质) 特征(语言学) 卷积神经网络 模式识别(心理学) 计算机科学 特征提取 噪音(视频) 计算机视觉 图像(数学) 地质学 地震学 语言学 哲学
作者
Gang Li,Jiayao Hu,Daiwei Shan,Jiaxing Ao,Bangkui Huang,Zhiqiang Huang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:187: 109974-109974 被引量:63
标识
DOI:10.1016/j.ymssp.2022.109974
摘要

Accurate fault diagnosis is critical to the safe and reliable operation of the drilling pump. The challenge in fault diagnosis of the fluid end of the drilling pump is to extract the fault features more accurately. This paper proposes an innovative expansion operation to convert the one-dimensional (1D) signal into three-dimensional (3D) images with 3 channels, which not only increases the visibility of feature information but also reduces the influence of noise. To increase the identification types and improve the identification accuracy, this paper provides a Convolutional Neural Network (CNN) drilling pump fluid end fault diagnosis method based on the expansion operation. Firstly, to solve the problem that the feature information is not obvious in the 3D images, the expansion operation converts the 1D vibration signals into 3D images to generate images with more obvious features. Then, the AlexNet model is investigated by changing the number of neurons in the first fully connected layer. Compared to directly generated 3D images, grayscale images generated by Do’s method, and grayscale images generated by Do’s method combined with expansion operation, the diagnosis accuracy of the AlexNet model based on the 3D images generated by expansion operation is the highest. Finally, the experiment of the proposed fault diagnosis method of the fluid end of the drilling pump is carried out. Results show that the method proposed in this paper identifies 9 types of faults of the drilling pump’s fluid end with a mean accuracy of 98.00%, which is significantly higher than that of other diagnostic methods. This research provides a new approach to more accurately diagnose the drilling pump fluid end faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维奈克拉应助科研通管家采纳,获得20
刚刚
刚刚
科研66666完成签到 ,获得积分10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
苏州河发布了新的文献求助10
1秒前
晟sheng完成签到 ,获得积分10
1秒前
香蕉觅云应助夷则十五采纳,获得10
1秒前
2秒前
景三完成签到,获得积分10
3秒前
如常发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
砂糖发布了新的文献求助10
4秒前
上官若男应助姜菲菲采纳,获得10
4秒前
4秒前
小羊先生完成签到 ,获得积分10
5秒前
丹丹子发布了新的文献求助20
5秒前
慕青应助砂狼白子采纳,获得10
5秒前
852应助晶晶采纳,获得10
5秒前
枳酒发布了新的文献求助10
5秒前
M7发布了新的文献求助10
6秒前
科研通AI6应助葛藟萦藤采纳,获得10
6秒前
haha发布了新的文献求助30
7秒前
万能图书馆应助砂糖采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
佳洛父亲完成签到,获得积分10
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621273
求助须知:如何正确求助?哪些是违规求助? 4706037
关于积分的说明 14934680
捐赠科研通 4765222
什么是DOI,文献DOI怎么找? 2551555
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746