Economically viable electrocatalytic ethylene production with high yield and selectivity

催化作用 电催化剂 材料科学 石油化工 产量(工程) 纳米材料基催化剂 乙烯 化学工程 原材料 乙炔 制氢 纳米技术 电化学 化学 纳米颗粒 电极 有机化学 冶金 物理化学 工程类
作者
Bo‐Hang Zhao,Fanpeng Chen,Mengke Wang,Chuanqi Cheng,Yongmeng Wu,Cuibo Liu,Yifu Yu,Bin Zhang
出处
期刊:Nature sustainability [Nature Portfolio]
卷期号:6 (7): 827-837 被引量:88
标识
DOI:10.1038/s41893-023-01084-x
摘要

Electrocatalytic semihydrogenation of acetylene provides a clean pathway to the production of ethylene (C2H4), one of the most widely used petrochemical feedstocks. However, its performance is still well below that of the thermocatalytic route, leaving the practical feasibility of this electrochemical process questionable. Here our techno-economic analysis shows that this process becomes profitable if the Faraday efficiency exceeds 85% at a current density of 0.2 A cm−2. As a result, we design a Cu nanoparticle catalyst with coordinatively unsaturated sites to steer the reaction towards these targets. Our electrocatalyst synthesized on gas diffusion layer coated carbon paper enables a high C2H4 yield rate of 70.15 mmol mg−1 h−1 and a Faraday efficiency of 97.7% at an industrially relevant current density of 0.5 A cm−2. Combined characterizations and calculations reveal that this performance can be attributed to the favourable combination of a higher energy barrier for the coupling of active hydrogen atoms (H*) and weak absorption of *C2H4. The former suppresses the competitive hydrogen evolution reaction, whereas the latter avoids overhydrogenation and C–C coupling. Further life cycle assessment evidences the economic feasibility and sustainability of the process. Our work suggests a way towards rational design and manipulation of nanocatalysts that could find wider and greener catalytic applications. Ethylene is a widely used petrochemical feedstock for the manufacture of various critical chemicals. Here the authors show a rationally designed Cu catalyst that enables electrocatalytic production with high performance and economic feasibility as well as sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
升学顺利身体健康完成签到,获得积分10
6秒前
liangchenglvliao完成签到 ,获得积分10
7秒前
甘泊寓完成签到,获得积分10
8秒前
1_0发布了新的文献求助10
8秒前
儒雅老太完成签到,获得积分10
10秒前
圣诞节完成签到,获得积分10
10秒前
可爱的函函应助叶95采纳,获得10
15秒前
负责冰凡完成签到,获得积分20
17秒前
科研通AI5应助柠橙采纳,获得30
18秒前
21秒前
21秒前
25秒前
26秒前
ding应助黄饱饱采纳,获得10
26秒前
Ava应助黄饱饱采纳,获得10
26秒前
Orange应助黄饱饱采纳,获得10
26秒前
柠橙发布了新的文献求助30
31秒前
41秒前
核桃应助祁归一采纳,获得10
43秒前
Julie完成签到 ,获得积分10
43秒前
Hmbb完成签到,获得积分10
44秒前
Lucas应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
爆米花应助科研通管家采纳,获得10
44秒前
zhangyidian应助科研通管家采纳,获得30
45秒前
FashionBoy应助夏禾采纳,获得10
45秒前
搜集达人应助科研通管家采纳,获得30
45秒前
SYLH应助科研通管家采纳,获得20
45秒前
bkagyin应助科研通管家采纳,获得10
45秒前
顾矜应助科研通管家采纳,获得10
45秒前
上官若男应助科研通管家采纳,获得10
45秒前
ding应助科研通管家采纳,获得10
45秒前
wanci应助科研通管家采纳,获得10
45秒前
45秒前
46秒前
科目三应助科研通管家采纳,获得10
46秒前
mengzhe完成签到,获得积分10
46秒前
47秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777324
求助须知:如何正确求助?哪些是违规求助? 3322593
关于积分的说明 10210806
捐赠科研通 3037943
什么是DOI,文献DOI怎么找? 1666984
邀请新用户注册赠送积分活动 797900
科研通“疑难数据库(出版商)”最低求助积分说明 758072