Automated Prediction of Early Recurrence in Advanced Sinonasal Squamous Cell Carcinoma With Deep Learning and Multi-parametric MRI-based Radiomics Nomogram

医学 列线图 无线电技术 队列 有效扩散系数 逻辑回归 放射科 Lasso(编程语言) 阶段(地层学) 磁共振成像 核医学 人工智能 肿瘤科 内科学 计算机科学 生物 万维网 古生物学
作者
Mengyan Lin,Naier Lin,Sihui Yu,Yan Sha,Yan Zeng,Aie Liu,Yue Niu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (10): 2201-2211 被引量:10
标识
DOI:10.1016/j.acra.2022.11.013
摘要

Preoperative prediction of the recurrence risk in patients with advanced sinonasal squamous cell carcinoma (SNSCC) is critical for individualized treatment. To evaluate the predictive ability of radiomics signature (RS) based on deep learning and multiparametric MRI for the risk of 2-year recurrence in advanced SNSCC.Preoperative MRI datasets were retrospectively collected from 265 SNSCC patients (145 recurrences) who underwent preoperative MRI, including T2-weighted (T2W), contrast-enhanced T1-weighted (T1c) sequences and diffusion-weighted (DW). All patients were divided into 165 training cohort and 70 test cohort. A deep learning segmentation model based on VB-Net was used to segment regions of interest (ROIs) for preoperative MRI and radiomics features were extracted from automatically segmented ROIs. Least absolute shrinkage and selection operator (LASSO) and logistic regression (LR) were applied for feature selection and radiomics score construction. Combined with meaningful clinicopathological predictors, a nomogram was developed and its performance was evaluated. In addition, X-title software was used to divide patients into high-risk or low-risk early relapse (ER) subgroups. Recurrence-free survival probability (RFS) was assessed for each subgroup.The radiomics score, T stage, histological grade and Ki-67 predictors were independent predictors. The segmentation models of T2WI, T1c, and apparent diffusion coefficient (ADC) sequences achieved Dice coefficients of 0.720, 0.727, and 0.756, respectively, in the test cohort. RS-T2, RS-T1c and RS-ADC were derived from single-parameter MRI. RS-Combined (combined with T2WI, T1c, and ADC features) was derived from multiparametric MRI and reached area under curve (AUC) and accuracy of 0.854 (0.749-0.927) and 74.3% (0.624-0.840), respectively, in the test cohort. The calibration curve and decision curve analysis (DCA) illustrate its value in clinical practice. Kaplan-Meier analysis showed that the 2-year RFS rate for low-risk patients was significantly greater than that for high-risk patients in both the training and testing cohorts (p < 0.001).Automated nomograms based on multi-sequence MRI help to predict ER in SNSCC patients preoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
赫若魔应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
zzx完成签到,获得积分10
3秒前
4秒前
corazon完成签到,获得积分10
5秒前
想毕业的小橙子完成签到,获得积分10
6秒前
8秒前
11秒前
开朗怜菡发布了新的文献求助10
11秒前
111发布了新的文献求助10
12秒前
抚远发布了新的文献求助10
15秒前
16秒前
陈晓彤发布了新的文献求助10
17秒前
华仔应助章传杰采纳,获得10
18秒前
PanLi发布了新的文献求助10
18秒前
慈祥的诗蕾完成签到,获得积分10
19秒前
善学以致用应助鱼丸采纳,获得10
20秒前
你好发布了新的文献求助10
21秒前
21秒前
22秒前
ephore应助药丸采纳,获得30
22秒前
魔幻的小蘑菇完成签到 ,获得积分10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776447
求助须知:如何正确求助?哪些是违规求助? 4108299
关于积分的说明 12708394
捐赠科研通 3829447
什么是DOI,文献DOI怎么找? 2112613
邀请新用户注册赠送积分活动 1136450
关于科研通互助平台的介绍 1020124