Automated Prediction of Early Recurrence in Advanced Sinonasal Squamous Cell Carcinoma With Deep Learning and Multi-parametric MRI-based Radiomics Nomogram

医学 列线图 无线电技术 队列 有效扩散系数 逻辑回归 放射科 Lasso(编程语言) 阶段(地层学) 磁共振成像 核医学 人工智能 肿瘤科 内科学 计算机科学 古生物学 万维网 生物
作者
Mengyan Lin,Naier Lin,Sihui Yu,Yan Sha,Yan Zeng,Aie Liu,Yue Niu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (10): 2201-2211 被引量:8
标识
DOI:10.1016/j.acra.2022.11.013
摘要

Preoperative prediction of the recurrence risk in patients with advanced sinonasal squamous cell carcinoma (SNSCC) is critical for individualized treatment. To evaluate the predictive ability of radiomics signature (RS) based on deep learning and multiparametric MRI for the risk of 2-year recurrence in advanced SNSCC.Preoperative MRI datasets were retrospectively collected from 265 SNSCC patients (145 recurrences) who underwent preoperative MRI, including T2-weighted (T2W), contrast-enhanced T1-weighted (T1c) sequences and diffusion-weighted (DW). All patients were divided into 165 training cohort and 70 test cohort. A deep learning segmentation model based on VB-Net was used to segment regions of interest (ROIs) for preoperative MRI and radiomics features were extracted from automatically segmented ROIs. Least absolute shrinkage and selection operator (LASSO) and logistic regression (LR) were applied for feature selection and radiomics score construction. Combined with meaningful clinicopathological predictors, a nomogram was developed and its performance was evaluated. In addition, X-title software was used to divide patients into high-risk or low-risk early relapse (ER) subgroups. Recurrence-free survival probability (RFS) was assessed for each subgroup.The radiomics score, T stage, histological grade and Ki-67 predictors were independent predictors. The segmentation models of T2WI, T1c, and apparent diffusion coefficient (ADC) sequences achieved Dice coefficients of 0.720, 0.727, and 0.756, respectively, in the test cohort. RS-T2, RS-T1c and RS-ADC were derived from single-parameter MRI. RS-Combined (combined with T2WI, T1c, and ADC features) was derived from multiparametric MRI and reached area under curve (AUC) and accuracy of 0.854 (0.749-0.927) and 74.3% (0.624-0.840), respectively, in the test cohort. The calibration curve and decision curve analysis (DCA) illustrate its value in clinical practice. Kaplan-Meier analysis showed that the 2-year RFS rate for low-risk patients was significantly greater than that for high-risk patients in both the training and testing cohorts (p < 0.001).Automated nomograms based on multi-sequence MRI help to predict ER in SNSCC patients preoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助NXK采纳,获得10
刚刚
随便发布了新的文献求助10
1秒前
6秒前
9秒前
9秒前
英俊的铭应助王翎力采纳,获得10
9秒前
9秒前
wanci应助能干夏波采纳,获得10
9秒前
11秒前
NXK发布了新的文献求助10
11秒前
LYJ发布了新的文献求助30
14秒前
早睡早起完成签到 ,获得积分10
14秒前
蘇q完成签到 ,获得积分10
15秒前
灰太狼大王完成签到 ,获得积分10
15秒前
笨笨芯发布了新的文献求助30
15秒前
15秒前
彭于晏应助gcy采纳,获得10
16秒前
16秒前
BUCI发布了新的文献求助20
16秒前
快乐的小王完成签到,获得积分10
17秒前
拾寒发布了新的文献求助20
20秒前
无辜的皮皮虾完成签到,获得积分10
21秒前
大个应助笨笨芯采纳,获得30
21秒前
21秒前
能干夏波发布了新的文献求助10
22秒前
22秒前
风趣钻石发布了新的文献求助10
23秒前
23秒前
Cheung2121完成签到,获得积分20
27秒前
gcy发布了新的文献求助10
28秒前
chenchen发布了新的文献求助10
28秒前
能干夏波完成签到,获得积分10
29秒前
Cheung2121发布了新的文献求助10
29秒前
张青岳完成签到,获得积分10
29秒前
彦希完成签到 ,获得积分10
31秒前
31秒前
华仔应助BUCI采纳,获得10
32秒前
32秒前
852应助叫我学霸男神裴采纳,获得10
33秒前
笨笨芯发布了新的文献求助30
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776905
求助须知:如何正确求助?哪些是违规求助? 3322325
关于积分的说明 10209713
捐赠科研通 3037674
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757984