Risk forecasting using Long Short-Term Memory Mixture Density Networks

期限(时间) 短时记忆 长记忆 短时记忆 计量经济学 计算机科学 业务 经济 人工智能 心理学 人工神经网络 神经科学 工作记忆 认知 波动性(金融) 物理 量子力学 循环神经网络
作者
Nico Herrig
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.01278
摘要

This work aims to implement Long Short-Term Memory mixture density networks (LSTM-MDNs) for Value-at-Risk forecasting and compare their performance with established models (historical simulation, CMM, and GARCH) using a defined backtesting procedure. The focus was on the neural network's ability to capture volatility clustering and its real-world applicability. Three architectures were tested: a 2-component mixture density network, a regularized 2-component model (Arimond et al., 2020), and a 3-component mixture model, the latter being tested for the first time in Value-at-Risk forecasting. Backtesting was performed on three stock indices (FTSE 100, S&P 500, EURO STOXX 50) over two distinct two-year periods (2017-2018 as a calm period, 2021-2022 as turbulent). Model performance was assessed through unconditional coverage and independence assumption tests. The neural network's ability to handle volatility clustering was validated via correlation analysis and graphical evaluation. Results show limited success for the neural network approach. LSTM-MDNs performed poorly for 2017/2018 but outperformed benchmark models in 2021/2022. The LSTM mechanism allowed the neural network to capture volatility clustering similarly to GARCH models. However, several issues were identified: the need for proper model initialization and reliance on large datasets for effective learning. The findings suggest that while LSTM-MDNs provide adequate risk forecasts, further research and adjustments are necessary for stable performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩的网络完成签到 ,获得积分10
刚刚
狗十七发布了新的文献求助10
刚刚
不一完成签到,获得积分10
1秒前
完美世界应助卢卿采纳,获得10
1秒前
可爱打工霖完成签到,获得积分10
1秒前
1秒前
1秒前
积极烧鹅完成签到,获得积分10
2秒前
别管我了应助Billy采纳,获得30
2秒前
HCS关闭了HCS文献求助
3秒前
七里香完成签到 ,获得积分10
3秒前
czx完成签到,获得积分10
4秒前
4秒前
zhao完成签到,获得积分10
4秒前
悠悠完成签到,获得积分10
5秒前
linydys完成签到,获得积分10
5秒前
猪猪hero应助22采纳,获得10
5秒前
明理的寻真完成签到,获得积分10
5秒前
mx发布了新的文献求助10
5秒前
李健的小迷弟应助yangL采纳,获得10
5秒前
6秒前
blank12发布了新的文献求助20
6秒前
猛犸颠勺发布了新的文献求助10
7秒前
陈婷婷完成签到,获得积分10
7秒前
学术的刘完成签到,获得积分10
7秒前
Akim应助窦长昕采纳,获得10
7秒前
Xu发布了新的文献求助10
7秒前
8秒前
尊敬的夏槐完成签到,获得积分10
9秒前
枝枝发布了新的文献求助10
9秒前
扶余山本完成签到,获得积分10
9秒前
大个应助不解释12112采纳,获得10
9秒前
10秒前
10秒前
KKDDBB完成签到,获得积分10
10秒前
10秒前
呆萌松鼠完成签到,获得积分10
13秒前
NexusExplorer应助moonlin采纳,获得10
13秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958563
求助须知:如何正确求助?哪些是违规求助? 3504871
关于积分的说明 11120709
捐赠科研通 3236153
什么是DOI,文献DOI怎么找? 1788666
邀请新用户注册赠送积分活动 871279
科研通“疑难数据库(出版商)”最低求助积分说明 802646