Non-destructive identification of cashmere and wool fibers based on PLS-DA and LDA using NIR spectroscopy

材料科学 羊毛 鉴定(生物学) 光谱学 复合材料 物理 生物 植物 量子力学
作者
Xin Chen,Fang Wang,Yaolin Zhu
出处
期刊:Textile Research Journal [SAGE Publishing]
标识
DOI:10.1177/00405175241295386
摘要

Manual identification of cashmere and wool fibers is often laborious, subjective, and time-consuming due to their extremely similar features. In order to non-destructively and accurately detect these animal fibers, this study proposes a novel detection method based on machine learning algorithms by near-infrared (NIR) spectroscopy. Building upon the preprocessing of NIR spectroscopy data of cashmere and wool fibers, both partial least-squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) classifiers are used to distinguish cashmere and wool fibers. First, four data preprocessing methods are applied: mean normalization (MN), z-score standardization (ZSS), mahalanobis distance (MD), and discrete wavelet transform (DWT). Second, following the preprocessing, PLS-DA is used for feature extraction of the spectral data. Finally, based on the criterion of cumulative contribution rate of 80%, determine the number of principal components (PCs) and use the selected PCs as input for LDA. This study compares three feature extraction methods, principal component analysis (PCA), factor analysis, and sparse principal component analysis (SPCA), and two identification models, k-nearest neighbor (KNN) and decision tree (DT). Experimental results indicate that the proposed PLS-DA-LDA model outperforms the other 11 models, offering a new method for the identification of cashmere and wool fibers using NIR spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
在水一方应助森木采纳,获得10
2秒前
sungem发布了新的文献求助30
4秒前
科研通AI5应助灵泽采纳,获得10
5秒前
zzz发布了新的文献求助10
5秒前
6秒前
遇上就这样吧应助liyu采纳,获得50
6秒前
8秒前
10秒前
10秒前
ff完成签到,获得积分10
10秒前
摸俞发布了新的文献求助10
12秒前
机智采枫完成签到 ,获得积分10
12秒前
13秒前
13秒前
霸气映之完成签到,获得积分10
13秒前
13秒前
15秒前
zzz完成签到,获得积分10
16秒前
18秒前
Sky应助摸俞采纳,获得10
18秒前
万能图书馆应助摸俞采纳,获得10
18秒前
bwl发布了新的文献求助10
18秒前
pcr163应助殷勤的紫槐采纳,获得50
18秒前
18秒前
tree发布了新的文献求助10
19秒前
20秒前
21秒前
灵泽完成签到,获得积分20
21秒前
22秒前
23秒前
超A发布了新的文献求助10
23秒前
容荣发布了新的文献求助10
24秒前
灵泽发布了新的文献求助10
24秒前
慕青应助一条虫gg采纳,获得10
25秒前
DataSailor发布了新的文献求助10
25秒前
可靠不凡关注了科研通微信公众号
25秒前
ksrcc发布了新的文献求助10
26秒前
安渝完成签到 ,获得积分10
26秒前
atom完成签到 ,获得积分10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797513
求助须知:如何正确求助?哪些是违规求助? 3342865
关于积分的说明 10313787
捐赠科研通 3059598
什么是DOI,文献DOI怎么找? 1678983
邀请新用户注册赠送积分活动 806288
科研通“疑难数据库(出版商)”最低求助积分说明 763058