人参
酵母
传统医学
词根(语言学)
化学
生物
计算生物学
医学
生物化学
病理
替代医学
哲学
语言学
作者
H. Liang,Hai Sun,Cai Shao,Bo-Chen Lyu,Wei Cao,Long Hu,Yayu Zhang
出处
期刊:PubMed
日期:2024-11-01
卷期号:49 (22): 6107-6118
标识
DOI:10.19540/j.cnki.cjcmm.20240813.102
摘要
To construct a high-quality Panax ginseng cDNA library, transcription factors binding to the P. ginseng PgD14 gene promoter were screened by yeast one-hybrid, and proteins interacting with the P. ginseng Pgpht2-1 gene-encoded protein were screened by yeast two-hybrid. In this study, root tissues of P. ginseng were used as materials. Gateway technology was used to construct the P. ginseng yeast one-hybrid library, and duplex-specific nuclease(DSN) homogenization technology was used to construct the P. ginseng yeast two-hybrid library. The pAbAi-PgD14-Pro961 vector was used as bait to screen candidate transcription factors that might bind to the PgD14 gene promoter from the yeast one-hybrid library, and the pGBKT7-Pgpht2-1 vector was used as bait to screen candidate proteins that might interact with the Pgpht2-1 gene-encoded protein from the yeast two-hybrid library. The yeast one-hybrid library had a size of 1.20×10~7 CFU, a recombination rate of 100%, and an average inserted fragment length of more than 1 000 bp. The yeast two-hybrid library had a size of 1.832×10~5 CFU, a recombination rate of 100%, and an average inserted fragment length of about 1 000 bp. The recombinant vectors pAbAi-PgD14-Pro961 and pGBKT7-Pgpht2-1 were transformed into Y1HGold and AH109 strains, respectively, and interacting proteins were screened by yeast one-hybrid and yeast two-hybrid. As a result, 54 transcription factors that could bind to the PgD14 gene promoter of P. ginseng and 42 proteins that may interact with the protein encoded by the Pgpht2-1 gene were identified. This study successfully constructed the P. ginseng yeast one-hybrid and yeast two-hybrid cDNA libraries, laying a foundation for subsequent studies on the functions of the P. ginseng PgD14, Pgpht2-1, and other genes.
科研通智能强力驱动
Strongly Powered by AbleSci AI