Graph Size-imbalanced Learning with Energy-guided Structural Smoothing

计算机科学 平滑的 图形 人工智能 机器学习 理论计算机科学 计算机视觉
作者
Jiawen Qin,Pengfeng Huang,Qingyun Sun,Cheng Ji,Xingcheng Fu,Jianxin Li
标识
DOI:10.1145/3701551.3703559
摘要

Graph is a prevalent data structure employed to represent the relationships between entities, frequently serving as a tool to depict and simulate numerous systems, such as molecules and social networks.However, real-world graphs usually suffer from the size-imbalanced problem in the multi-graph classification, i.e., a long-tailed distribution with respect to the number of nodes.Recent studies find that off-the-shelf Graph Neural Networks (GNNs) would compromise model performance under the long-tailed settings.We investigate this phenomenon and discover that the long-tailed graph distribution greatly exacerbates the discrepancies in structural features.To alleviate this problem, we propose a novel energy-based sizeimbalanced learning framework named SIMBA, which smooths the features between head and tail graphs and re-weights them based on the energy propagation.Specifically, we construct a higher-level graph abstraction named Graphs-to-Graph according to the correlations between graphs to link independent graphs and smooths the structural discrepancies.We further devise an energy-based message-passing belief propagation method for re-weighting lower compatible graphs in the training process and further smooth local feature discrepancies.Extensive experimental results over five public size-imbalanced datasets demonstrate the superior effectiveness of the model for size-imbalanced graph classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
jimmy发布了新的文献求助10
2秒前
4秒前
Lionnn完成签到 ,获得积分10
5秒前
Dank1ng发布了新的文献求助10
6秒前
6秒前
Cynn发布了新的文献求助10
6秒前
wanci应助KComboN采纳,获得10
6秒前
7秒前
CodeCraft应助JinGN采纳,获得10
7秒前
7秒前
7秒前
10秒前
yyyyyyy发布了新的文献求助10
11秒前
jimmy完成签到,获得积分10
12秒前
Keke发布了新的文献求助10
12秒前
liiii发布了新的文献求助30
12秒前
虚心远航发布了新的文献求助10
13秒前
训仔完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
916应助Ming采纳,获得10
15秒前
慕青应助不爱吃芒果采纳,获得10
16秒前
Cynn完成签到,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
小豆豆严发布了新的文献求助10
19秒前
谷捣猫宁发布了新的文献求助10
20秒前
初夏发布了新的文献求助10
20秒前
可口可乐完成签到,获得积分10
21秒前
李小狼不浪完成签到,获得积分10
21秒前
mafukairi应助害怕的鹏飞采纳,获得10
21秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
22秒前
23秒前
英姑应助虚心远航采纳,获得10
25秒前
大个应助越幸运采纳,获得10
25秒前
26秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870808
求助须知:如何正确求助?哪些是违规求助? 3412914
关于积分的说明 10681953
捐赠科研通 3137368
什么是DOI,文献DOI怎么找? 1730902
邀请新用户注册赠送积分活动 834444
科研通“疑难数据库(出版商)”最低求助积分说明 781172