A Multi-Method Approach to Analyzing MOFs for Chemical Warfare Simulant Capture: Molecular Simulation, Machine Learning, and Molecular Fingerprints

吸附 指纹(计算) 计算机科学 材料科学 生化工程 纳米技术 化学 人工智能 工程类 有机化学
作者
Z. H. Ming,Min Zhang,Shouxin Zhang,Xiaopeng Li,Xiaoshan Yan,Kexin Guan,Yu Li,Yufeng Peng,Jinfeng Li,Heguo Li,Yue Zhao,Zhiwei Qiao
出处
期刊:Nanomaterials [MDPI AG]
卷期号:15 (3): 183-183 被引量:3
标识
DOI:10.3390/nano15030183
摘要

Mustard gas (HD) is a well-known chemical warfare agent, recognized for its extreme toxicity and severe hazards. Metal–organic frameworks (MOFs), with their unique structural properties, show significant potential for HD adsorption applications. Due to the extreme hazards of HD, most experimental studies focus on its simulants, but molecular simulation research on these simulants remains limited. Simulation analyses of simulants can uncover structure–performance relationships and enable experimental validation, optimizing methods, and improving material design and performance predictions. This study integrates molecular simulations, machine learning (ML), and molecular fingerprinting (MFs) to identify MOFs with high adsorption performance for the HD simulant diethyl sulfide (DES), followed by in-depth structural analysis and comparison. First, MOFs are categorized into Top, Middle, and Bottom materials based on their adsorption efficiency. Univariate analysis, machine learning, and molecular fingerprinting are then used to identify and compare the distinguishing features and fingerprints of each category. Univariate analysis helps identify the optimal structural ranges of Top and Bottom materials, providing a reference for initial material screening. Machine learning feature importance analysis, combined with SHAP methods, identifies the key features that most significantly influence model predictions across categories, offering valuable insights for future material design. Molecular fingerprint analysis reveals critical fingerprint combinations, showing that adsorption performance is optimized when features such as metal oxides, nitrogen-containing heterocycles, six-membered rings, and C=C double bonds co-exist. The integrated analysis using HTCS, ML, and MFs provides new perspectives for designing high-performance MOFs and demonstrates significant potential for developing materials for the adsorption of CWAs and their simulants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
刘雪完成签到 ,获得积分10
2秒前
酷波er应助L44采纳,获得10
2秒前
搜集达人应助牛京采纳,获得10
3秒前
书记发布了新的文献求助10
3秒前
4秒前
DrKorla发布了新的文献求助10
5秒前
Steven发布了新的文献求助10
5秒前
Lucas应助陈豆豆采纳,获得10
5秒前
zz发布了新的文献求助10
6秒前
王文涛完成签到,获得积分10
6秒前
波尔完成签到,获得积分10
6秒前
ds完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
ekun完成签到,获得积分10
9秒前
小二郎应助落寞白曼采纳,获得10
10秒前
10秒前
11秒前
水蜜桃发布了新的文献求助10
11秒前
Jin完成签到,获得积分20
11秒前
元半仙完成签到,获得积分10
12秒前
SciGPT应助punker采纳,获得10
12秒前
呀咪完成签到 ,获得积分10
12秒前
12秒前
13秒前
王文涛发布了新的文献求助10
13秒前
13秒前
英姑应助Crystal采纳,获得10
14秒前
zz完成签到,获得积分10
14秒前
sharronjxx发布了新的文献求助10
14秒前
书记发布了新的文献求助10
14秒前
TiAmo完成签到,获得积分10
16秒前
17秒前
充电宝应助勤奋的绝义采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420650
求助须知:如何正确求助?哪些是违规求助? 4535678
关于积分的说明 14151067
捐赠科研通 4452621
什么是DOI,文献DOI怎么找? 2442367
邀请新用户注册赠送积分活动 1433789
关于科研通互助平台的介绍 1410975