Fault Diagnosis for Electric Vehicle Battery Pack Interconnection System Using Real-World Driving Data

互连 汽车工程 断层(地质) 计算机科学 电池(电) 电池组 嵌入式系统 可靠性工程 工程类 计算机网络 功率(物理) 物理 量子力学 地震学 地质学
作者
Sang-jun Park,Byeong-Su Kang,Dingli Yu,Myeongyu Jeong,Youngsun Hong
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/tie.2024.3522461
摘要

Electric vehicles (EVs) have gained prominence for addressing global challenges such as climate change and sustainability. With rising EV adoption, there is a growing need for efficient diagnostic methods adaptable to diverse conditions to ensure vehicle reliability and longevity. This study presents a generalized approach to diagnosing degradation and faults in EV battery packs, utilizing real-world driving data to enhance fault detection accuracy. Scaled-down experiments with cylindrical batteries simulated various fault conditions and operational states, enabling the development of a fault diagnosis methodology based on current–voltage profile analysis. This methodology accurately identifies faults, such as external wire harness issues, interconnect busbar anomalies, and individual cell defects, and is adaptable to different battery configurations and environments. Furthermore, a diagnostic technique for battery interconnect systems (BISs) was developed using temperature-compensated resistance calculations from real-world data. Empirical results demonstrate the approach's effectiveness in detecting and categorizing faults and age-related degradation within EV BISs across various conditions. Notably, we found that a twofold increase in BIS resistance reduces battery efficiency by 1.4% in terms of motor output and raises total energy consumption by 10%. This generalized methodology provides a framework for evaluating BIS performance, enhancing reliability, and optimizing maintenance for diverse EV applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qq完成签到 ,获得积分10
刚刚
小叙发布了新的文献求助10
1秒前
4秒前
5秒前
无情冷珍完成签到,获得积分10
6秒前
book完成签到,获得积分10
7秒前
abcdefghi__lmnop完成签到,获得积分10
11秒前
alv发布了新的文献求助10
11秒前
12秒前
雨眠完成签到,获得积分10
13秒前
老神在在完成签到,获得积分10
13秒前
16秒前
18秒前
鱼叮叮完成签到,获得积分10
19秒前
20秒前
JIANYOUFU发布了新的文献求助30
21秒前
香芹又青发布了新的文献求助10
24秒前
dsfsd完成签到,获得积分10
24秒前
善良的灵羊完成签到 ,获得积分10
26秒前
小伊娃应助winnie采纳,获得10
26秒前
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
Orange应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
29秒前
Ava应助科研通管家采纳,获得10
29秒前
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
斯文败类应助Airlie采纳,获得10
31秒前
ww给ww的求助进行了留言
31秒前
33秒前
35秒前
37秒前
JIANYOUFU完成签到,获得积分10
39秒前
大大发布了新的文献求助10
39秒前
khc发布了新的文献求助10
40秒前
坦率的尔丝完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333882
求助须知:如何正确求助?哪些是违规求助? 3845389
关于积分的说明 12011387
捐赠科研通 3485934
什么是DOI,文献DOI怎么找? 1913504
邀请新用户注册赠送积分活动 956643
科研通“疑难数据库(出版商)”最低求助积分说明 857317