Weyl and Dirac Semimetals for Thermoelectric Applications

Dirac(视频压缩格式) 半金属 热电效应 凝聚态物理 物理 材料科学 量子力学 带隙 中微子
作者
Saurabh Singh,Sarmistha Das,Sudhir Kumar
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.11963
摘要

Weyl and Dirac semimetals, characterized by their unique band structures with linear energy dispersion (E vs k) near the Fermi level (EF), have emerged as promising candidates for next-generation technology based on thermoelectric materials. Their exceptional electronic properties, notably high carrier mobility and substantial Berry curvature, offer the potential to surmount the limitations inherent in conventional thermoelectric materials. A comprehensive understanding of the fundamental physics underlying these materials is essential. This chapter mainly focused into the topological properties and distinctive electronic band structures of Weyl and Dirac semimetals, providing a theoretical framework for comprehending their thermoelectric transport properties such as Seebeck coefficients, electrical and thermal conductivity. The pivotal role of Berry curvature in enhancing Seebeck coefficients while reducing thermal conductivity is a key focus. Experimental advancements in synthesizing single crystals and characterizing these materials have been significant. Recent development in material growth and characterization techniques have propelled research forward. The intricate relationship between material properties, such as carrier concentration, electronic bandgap, and crystal structure, and thermoelectric performance is explored. Realizing the potential of Weyl and Dirac semimetals for practical thermoelectric applications necessitates overcoming specific challenges. This chapter outlines strategies to optimize thermoelectric figures of merit (ZT) through band engineering, carrier doping, and nanostructuring. Moreover, the exploration of hybrid materials and heterostructures offers promising avenues for enhancing thermoelectric performance for renewable energy applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
usora发布了新的文献求助10
2秒前
科研通AI5应助ayer采纳,获得10
2秒前
3秒前
黄大仙完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
7秒前
8秒前
zhongu发布了新的文献求助30
8秒前
荔枝QQ糖完成签到 ,获得积分10
10秒前
环丙烷发布了新的文献求助10
10秒前
华清引完成签到,获得积分10
10秒前
虫二完成签到,获得积分10
11秒前
自信夜春发布了新的文献求助10
11秒前
fane完成签到,获得积分10
12秒前
12秒前
usora完成签到,获得积分10
14秒前
珂珂完成签到 ,获得积分10
14秒前
16秒前
23秒前
23秒前
TQT发布了新的文献求助10
28秒前
dtf完成签到,获得积分10
30秒前
鲤鱼奇异果完成签到,获得积分10
31秒前
znn完成签到 ,获得积分10
33秒前
三次成长发布了新的文献求助50
33秒前
酷酷亦寒完成签到,获得积分10
38秒前
38秒前
Luna完成签到 ,获得积分10
40秒前
41秒前
43秒前
柚仝完成签到 ,获得积分10
44秒前
xr完成签到 ,获得积分10
46秒前
谦让新竹完成签到,获得积分10
46秒前
依然发布了新的文献求助10
48秒前
51秒前
Ww完成签到,获得积分10
53秒前
瓦罐完成签到 ,获得积分10
54秒前
....发布了新的文献求助20
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776258
求助须知:如何正确求助?哪些是违规求助? 3321743
关于积分的说明 10207463
捐赠科研通 3036999
什么是DOI,文献DOI怎么找? 1666530
邀请新用户注册赠送积分活动 797517
科研通“疑难数据库(出版商)”最低求助积分说明 757868