A New Learning Paradigm for Foundation Model-Based Remote-Sensing Change Detection

变更检测 计算机科学 遥感 基础(证据) 人工智能 地质学 历史 考古
作者
Kaiyu Li,Xiangyong Cao,Deyu Meng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:72
标识
DOI:10.1109/tgrs.2024.3365825
摘要

Change detection (CD) is a critical task to observe and analyze dynamic processes of land cover. Although numerous deep learning-based CD models have performed excellently, their further performance improvements are constrained by the limited knowledge extracted from the given labelled data. On the other hand, the foundation models that emerged recently contain a huge amount of knowledge by scaling up across data modalities and proxy tasks. In this paper, we propose a Bi-Temporal Adapter Network (BAN), which is a universal foundation model-based CD adaptation framework aiming to extract the knowledge of foundation models for CD. The proposed BAN contains three parts, i.e. frozen foundation model (e.g., CLIP), bi-temporal adapter branch (Bi-TAB), and bridging modules between them. Specifically, BAN extracts general features through a frozen foundation model, which are then selected, aligned, and injected into Bi-TAB via the bridging modules. Bi-TAB is designed as a model-agnostic concept to extract task/domain-specific features, which can be either an existing arbitrary CD model or some hand-crafted stacked blocks. Beyond current customized models, BAN is the first extensive attempt to adapt the foundation model to the CD task. Experimental results show the effectiveness of our BAN in improving the performance of existing CD methods (e.g., up to 4.08% IoU improvement) with only a few additional learnable parameters. More importantly, these successful practices show us the potential of foundation models for remote sensing CD. The code is available at https://github.com/likyoo/BAN and will be supported in our Open-CD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助李克杨采纳,获得10
刚刚
幺幺幺完成签到 ,获得积分10
刚刚
王佳友完成签到,获得积分10
刚刚
song完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
孙_boss完成签到 ,获得积分10
2秒前
biubiudiu777发布了新的文献求助20
3秒前
bab发布了新的文献求助10
3秒前
许茗完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
ghw完成签到,获得积分20
5秒前
科研小白发布了新的文献求助10
5秒前
慢慢人完成签到,获得积分10
6秒前
7秒前
刘举慧发布了新的文献求助10
7秒前
窝窝完成签到,获得积分20
8秒前
大胆短靴发布了新的文献求助10
8秒前
Chen、Mascot完成签到,获得积分10
8秒前
慢慢人发布了新的文献求助10
9秒前
赘婿应助今晚打老虎采纳,获得10
10秒前
陈末应助迅速的丑采纳,获得10
11秒前
汉堡包应助年轻怀绿采纳,获得10
11秒前
ding应助风趣夜云采纳,获得10
13秒前
biubiudiu777发布了新的文献求助10
13秒前
14秒前
15秒前
wer发布了新的文献求助10
15秒前
16秒前
语言发布了新的文献求助10
16秒前
乐乐应助繁荣的易真采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406017
求助须知:如何正确求助?哪些是违规求助? 4524228
关于积分的说明 14096715
捐赠科研通 4437884
什么是DOI,文献DOI怎么找? 2435911
邀请新用户注册赠送积分活动 1427996
关于科研通互助平台的介绍 1406252