Predicting the Tensile Strength of 4D Printed PLA/EPO/Lignin Biocomposites Using Machine Learning

极限抗拉强度 木质素 材料科学 复合材料 有机化学 化学
作者
Amjad Fakhri Kamarulzaman,Nursyam Dzuha Haris,Hazleen Anuar,Siti Fauziah Toha,Yakubu Adekunle Alli,Mohd Romainor Manshor
出处
期刊:Key Engineering Materials 卷期号:975: 81-86
标识
DOI:10.4028/p-g9nis7
摘要

The allure of 4D printing and machine learning (ML) for various applications is unquestionable, and researchers are striving hard to improve their performance. In this work, machine learning has been applied to predict the tensile strength of the 4D printed materials. The study investigated the reinforcement of polylactic acid (PLA) filament with lignin from oil palm empty fruit bunches (OPEFB) in the presence of epoxidized palm oil (EPO) as 4D printable filament. The alkaline extraction method was carried out used sodium hydroxide (NaOH), followed by precipitation with mineral acids utilizing one-factor-at-a-time (OFAT). Thereafter, the tensile strength of the 4D printed material was evaluated by tensile testing machine followed by machine learning prediction in which convolutional neural network (CNN) was adopted. The morphology of the 4D printed materials was determined by scanning electron microscope (SEM). The SEM micrograph of the tensile test of biocomposites revealed layer-by-layer formation of the filaments on the printed unfilled PLA biocomposite indicating lower inter-filament bonding. In the first trial, the actual result of the experiment was evaluated to be 24.44 MPa while the CNN prediction was 25.53 MPa. In the second attempt, the actual result of the experiment was 31.61 MPa whereas the prediction from CNN was 27.55 MPa. The coefficient of determination value obtained from CNN prediction is 0.12662. The current study indicates that machine learning is an important tool to optimize and/or predict the properties of 4D printing materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
天天快乐应助chliyong采纳,获得10
3秒前
到处戳戳完成签到,获得积分10
3秒前
Hhhhh发布了新的文献求助10
3秒前
慕青应助隐形静芙采纳,获得10
5秒前
科目三应助Airlie采纳,获得10
5秒前
鲁远望应助冷静的豪采纳,获得10
5秒前
5秒前
夭夭发布了新的文献求助10
6秒前
8秒前
852应助高永康采纳,获得10
8秒前
Spark完成签到,获得积分10
8秒前
xian完成签到,获得积分10
8秒前
听话的富应助FG采纳,获得10
9秒前
乐乐应助xyx采纳,获得10
10秒前
10秒前
10秒前
柏达发布了新的文献求助10
10秒前
脑洞疼应助YiWei采纳,获得10
11秒前
11秒前
拼搏的初雪完成签到,获得积分10
13秒前
viviji完成签到,获得积分10
13秒前
李广辉发布了新的文献求助10
13秒前
在水一方应助yuna采纳,获得10
13秒前
灰原发布了新的文献求助10
14秒前
14秒前
席半发布了新的文献求助10
15秒前
一路狂奔等不了完成签到 ,获得积分10
15秒前
16秒前
共享精神应助Molly采纳,获得10
16秒前
17秒前
肥啾完成签到 ,获得积分10
17秒前
隐形静芙发布了新的文献求助10
17秒前
搜集达人应助6666采纳,获得10
18秒前
18秒前
小飞爱科研完成签到,获得积分10
18秒前
刘一手发布了新的文献求助10
19秒前
乐乐应助xiaobai采纳,获得10
19秒前
Ava应助牛牛采纳,获得10
19秒前
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343316
求助须知:如何正确求助?哪些是违规求助? 4478987
关于积分的说明 13941205
捐赠科研通 4375914
什么是DOI,文献DOI怎么找? 2404365
邀请新用户注册赠送积分活动 1396915
关于科研通互助平台的介绍 1369240