Attention-Based Multiscale Feature Fusion for Efficient Surface Defect Detection

计算机科学 人工智能 特征(语言学) 融合 模式识别(心理学) 传感器融合 特征提取 材料科学 语言学 哲学
作者
Yuhao Zhao,Qing Liu,Hu Su,Jiabin Zhang,Hongxuan Ma,Wei Zou,Song Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10 被引量:21
标识
DOI:10.1109/tim.2024.3372229
摘要

Deep-learning-based detection methods have been widely applied to industrial defect inspection. However, directly using vanilla detection methods fails to achieve satisfying performance due to the lack of identifiable features. In this paper, a novel attention-based multi-scale feature fusion method (AMFF) is proposed, aiming to enhance defect features and improve defect identification by leveraging attention mechanism in the feature fusion. AMFF includes self-enhanced attention module (SEAM) and cross-enhanced attention module (CEAM). SEAM is performed on a single feature map, which first adopts multiple dilation convolutions to enrich contextual information without compromising resolution and then utilizes the intra-layer attention on the current feature map. CEAM takes both the current feature map and the adjacent feature map as input to perform cross-layer attention. The adjacent feature map is modulated with the guidance of the current feature map, which is then combined with the current feature map and the output of SEAM for final prediction. AMFF is utilized in current feature fusion networks, e.g., FPN and PAFPN, and is further integrated into prevalent detectors to guide them to pay more attention to defects rather than the background. Extensive experiments are conducted on two real industrial datasets released by Tianchi platform, i.e., fabric and aluminum defect datasets. For each dataset, 500 images are randomly selected for test and the rest for training. The proposed AMFF is demonstrated to significantly boost defect detection accuracy with acceptable computational cost, and the real-time performance could fully satisfy practical requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wouldrt完成签到 ,获得积分10
刚刚
刚刚
hhh完成签到,获得积分10
1秒前
1秒前
老实凝蕊完成签到,获得积分10
1秒前
shmily完成签到,获得积分10
1秒前
啦啦啦啦啦完成签到 ,获得积分10
1秒前
Avae发布了新的文献求助10
1秒前
zhuboujs完成签到,获得积分10
2秒前
敏感涵山发布了新的文献求助10
2秒前
小罗完成签到,获得积分10
3秒前
天天快乐应助易武皇采纳,获得10
3秒前
白米完成签到,获得积分10
3秒前
4秒前
4秒前
梁亚龙完成签到,获得积分10
4秒前
李宇伦完成签到,获得积分10
4秒前
Anita完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
上官若男应助ddddd采纳,获得10
6秒前
李爱国应助Vicky采纳,获得10
6秒前
7秒前
7秒前
万能图书馆应助ee采纳,获得10
7秒前
7秒前
脑洞疼应助凡凡采纳,获得10
7秒前
8秒前
8秒前
微笑大螃蟹完成签到,获得积分10
8秒前
8秒前
李飞龙完成签到,获得积分10
8秒前
昔年发布了新的文献求助10
8秒前
ting5260发布了新的文献求助10
9秒前
hail发布了新的文献求助10
9秒前
幻雪应助Sledge采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402598
求助须知:如何正确求助?哪些是违规求助? 4521214
关于积分的说明 14084549
捐赠科研通 4435204
什么是DOI,文献DOI怎么找? 2434608
邀请新用户注册赠送积分活动 1426723
关于科研通互助平台的介绍 1405516