Attention-Based Multiscale Feature Fusion for Efficient Surface Defect Detection

计算机科学 人工智能 特征(语言学) 融合 模式识别(心理学) 传感器融合 特征提取 材料科学 语言学 哲学
作者
Yuhao Zhao,Qing Liu,Hu Su,Jiabin Zhang,Hongxuan Ma,Wei Zou,Song Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10 被引量:21
标识
DOI:10.1109/tim.2024.3372229
摘要

Deep-learning-based detection methods have been widely applied to industrial defect inspection. However, directly using vanilla detection methods fails to achieve satisfying performance due to the lack of identifiable features. In this paper, a novel attention-based multi-scale feature fusion method (AMFF) is proposed, aiming to enhance defect features and improve defect identification by leveraging attention mechanism in the feature fusion. AMFF includes self-enhanced attention module (SEAM) and cross-enhanced attention module (CEAM). SEAM is performed on a single feature map, which first adopts multiple dilation convolutions to enrich contextual information without compromising resolution and then utilizes the intra-layer attention on the current feature map. CEAM takes both the current feature map and the adjacent feature map as input to perform cross-layer attention. The adjacent feature map is modulated with the guidance of the current feature map, which is then combined with the current feature map and the output of SEAM for final prediction. AMFF is utilized in current feature fusion networks, e.g., FPN and PAFPN, and is further integrated into prevalent detectors to guide them to pay more attention to defects rather than the background. Extensive experiments are conducted on two real industrial datasets released by Tianchi platform, i.e., fabric and aluminum defect datasets. For each dataset, 500 images are randomly selected for test and the rest for training. The proposed AMFF is demonstrated to significantly boost defect detection accuracy with acceptable computational cost, and the real-time performance could fully satisfy practical requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
浮游呦呦完成签到,获得积分10
1秒前
WZH完成签到,获得积分10
2秒前
2秒前
慕青应助WangzX采纳,获得10
3秒前
Jasper应助丰富的乌冬面采纳,获得10
4秒前
4秒前
浪漫小阳发布了新的文献求助10
4秒前
Bo完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
zoey完成签到,获得积分20
7秒前
XING完成签到,获得积分10
7秒前
mmmi完成签到,获得积分10
7秒前
Nina完成签到,获得积分10
8秒前
蔡蔡蔡发布了新的文献求助10
9秒前
9秒前
tao完成签到 ,获得积分10
10秒前
JamesPei应助pengGuo采纳,获得10
10秒前
解天德发布了新的文献求助10
11秒前
黄饱饱发布了新的文献求助10
11秒前
不懈奋进应助多多采纳,获得30
11秒前
从不内卷完成签到,获得积分10
12秒前
保守派帮主完成签到,获得积分10
12秒前
ccm应助后撤步7777采纳,获得10
12秒前
充电宝应助XING采纳,获得10
13秒前
13秒前
领导范儿应助wxr采纳,获得10
14秒前
15秒前
上官若男应助缓慢采柳采纳,获得10
15秒前
AlexanderNEIL完成签到 ,获得积分10
15秒前
薄年完成签到,获得积分10
16秒前
Hello应助义气的乐曲采纳,获得10
16秒前
程程完成签到,获得积分10
17秒前
科研通AI6应助andre66采纳,获得10
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478656
求助须知:如何正确求助?哪些是违规求助? 4580309
关于积分的说明 14373418
捐赠科研通 4508649
什么是DOI,文献DOI怎么找? 2470837
邀请新用户注册赠送积分活动 1457568
关于科研通互助平台的介绍 1431452