Underwater image enhancement based on a combination of improved gated context aggregation network and gray world algorithms

水下 计算机科学 人工智能 计算机视觉 特征提取 熵(时间箭头) 模式识别(心理学) 算法 海洋学 地质学 物理 量子力学
作者
Zhen Liu,Hanchi Hong,Xiujing Gao
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (01) 被引量:1
标识
DOI:10.1117/1.jei.33.1.013009
摘要

Underwater images received by underwater robots in unrestricted environment during underwater operations are characterized by overall bluish and greenish tones, blurrier edge details, and low contrast. This phenomenon is due to the attenuation and scattering of light in the water and the influence of artificial light sources. To improve the visual performance of underwater imaging, we propose a two-step method of improved gated context aggregation network and gray world algorithms. First, based on similarities between the underwater optical imaging model and the atmosphere model, a gray world algorithm is used to calibrate the image. Then, the corrected underwater images are inputted into an improved gated contextual aggregation network, which is utilized to fuse the features at different levels within the images. The introduction of convolutional block attention module and residual structure can effectively improve the feature extraction ability and prevent network degradation. The method eliminates the grid artifact phenomenon and improves the flexibility of channel information to achieve image enhancement. By conducting experiments, we then compare the performance of the proposed method with six classical state-of-the-art methods. The qualitative results confirm that the proposed method is capable of effectively removing haze, correcting the color deviation of underwater images, and maintaining the naturalness of images. We further perform a quantitative evaluation and show that the proposed method outperforms the other methods that are compared with the proposed in terms of peak signal-to-noise ratio and structural similarity . The enhancement results are also measured by employing the information entropy and underwater color image quality evaluation index, indicating that the proposed method exhibits the highest mean values of 8.0579, 8.1194, and 0.6182, 0.5914 on the two datasets. The experimental results collectively validate the effectiveness of the proposed method in improved underwater image blur.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wr781586完成签到 ,获得积分10
1秒前
5秒前
木又发布了新的文献求助20
7秒前
短腿小柯基完成签到 ,获得积分10
8秒前
今后应助科研通管家采纳,获得10
10秒前
李文思完成签到,获得积分10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
pcr163应助科研通管家采纳,获得30
10秒前
TaoJ应助科研通管家采纳,获得10
10秒前
10秒前
爱吃脆脆鲨完成签到 ,获得积分10
11秒前
xzy998应助林洁佳采纳,获得10
13秒前
丘比特应助ZJeannine采纳,获得10
15秒前
15秒前
18秒前
yoke发布了新的文献求助10
20秒前
20秒前
22秒前
冷静的钢笔完成签到,获得积分10
23秒前
森鹿完成签到,获得积分10
24秒前
哈密哈密完成签到,获得积分10
24秒前
红豆泥完成签到,获得积分20
25秒前
红豆泥发布了新的文献求助10
28秒前
送不送书7完成签到 ,获得积分10
28秒前
赘婿应助汪汪别吃了采纳,获得10
29秒前
Sun完成签到,获得积分10
30秒前
卢雅妮完成签到 ,获得积分10
30秒前
zzcherished发布了新的文献求助10
31秒前
liuwenjie应助橙子橙子橙子采纳,获得10
31秒前
32秒前
大菠萝完成签到,获得积分10
33秒前
33秒前
35秒前
玖七发布了新的文献求助10
36秒前
三土有兀完成签到 ,获得积分10
36秒前
上官若男应助allen采纳,获得10
37秒前
ding应助魔王小豆包采纳,获得10
37秒前
ZJeannine发布了新的文献求助10
38秒前
小单王发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780490
求助须知:如何正确求助?哪些是违规求助? 3325946
关于积分的说明 10224872
捐赠科研通 3041027
什么是DOI,文献DOI怎么找? 1669160
邀请新用户注册赠送积分活动 799019
科研通“疑难数据库(出版商)”最低求助积分说明 758663