清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Benchmark problems for large-scale constrained multi-objective optimization with baseline results

计算机科学 基线(sea) 水准点(测量) 比例(比率) 数学优化 数学 海洋学 物理 大地测量学 量子力学 地质学 地理
作者
Kangjia Qiao,Jing Liang,Kunjie Yu,Wei-Feng Guo,Caitong Yue,Boyang Qu,Ponnuthurai Nagaratnam Suganthan
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:86: 101504-101504 被引量:24
标识
DOI:10.1016/j.swevo.2024.101504
摘要

The interests in evolutionary constrained multiobjective optimization are rapidly increasing during the past two decades. However, most related studies are limited to small-scale problems, despite the fact that many practical problems contain large-scale decision variables. Although several large-scale constrained multi-objective evolutionary algorithms (CMOEAs) have been developed, they are still tested on benchmarks that are designed for small-scale problems without the features of large-scale problems. To promote the research on large-scale constrained multi-objective optimization (LSCMO), this paper proposes a new LSCMO benchmark based on the design principles of large-scale multi-objective optimization and constrained multi-objective optimization. In this benchmark, more realistic features are considered, such as mixed linkages between constraint variables and unconstrained variables, imbalanced contributions of variables to the objectives, varying number constraint functions. Besides, to better solve the proposed benchmark, a bidirectional sampling strategy is proposed, where a convergence direction sampling and a diversity direction sampling are used to accelerate the convergence and maintain diversity respectively. Furthermore, the proposed bidirectional sampling strategy is embedded into an existing CMOEA to improve the search ability of algorithm in the large-scale search space with constraints. In experiments, the proposed algorithm is compared with several latest peer algorithms, and the results verify that the designed benchmark functions can effectively test the performance of algorithms and the proposed algorithm can better tackle the new benchmark. Finally, the proposed algorithm is used to solve the network structure control-based personalized drug target recognition problems with more than 2000 decision variables, and results show its superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Axs完成签到,获得积分10
7秒前
丁娜完成签到 ,获得积分10
15秒前
19秒前
曙光完成签到,获得积分10
33秒前
36秒前
lameliu发布了新的文献求助10
37秒前
cadcae完成签到,获得积分10
39秒前
50秒前
徐团伟完成签到 ,获得积分10
51秒前
53秒前
58秒前
paopao完成签到 ,获得积分10
1分钟前
linwf完成签到 ,获得积分10
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
creep2020完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
快乐随心完成签到 ,获得积分10
1分钟前
1分钟前
WenJun完成签到,获得积分10
1分钟前
北国雪未消完成签到 ,获得积分10
1分钟前
宝宝熊的熊宝宝完成签到,获得积分10
2分钟前
陈糯米完成签到,获得积分10
2分钟前
rockyshi完成签到 ,获得积分10
2分钟前
xiaosui完成签到 ,获得积分10
2分钟前
乐正怡完成签到 ,获得积分0
2分钟前
独孤完成签到 ,获得积分10
3分钟前
zhang完成签到 ,获得积分10
3分钟前
lql完成签到 ,获得积分10
3分钟前
积极废物完成签到 ,获得积分10
4分钟前
4分钟前
微解感染发布了新的文献求助30
4分钟前
5分钟前
天天快乐应助微解感染采纳,获得30
5分钟前
兰岚完成签到,获得积分10
5分钟前
monk完成签到 ,获得积分10
5分钟前
ljn应助魔幻的妖丽采纳,获得10
5分钟前
5分钟前
hahah发布了新的文献求助10
5分钟前
可爱沛蓝完成签到 ,获得积分10
6分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906913
求助须知:如何正确求助?哪些是违规求助? 3452375
关于积分的说明 10870230
捐赠科研通 3178230
什么是DOI,文献DOI怎么找? 1755844
邀请新用户注册赠送积分活动 849133
科研通“疑难数据库(出版商)”最低求助积分说明 791370