MOIPC-MAAC: Communication-Assisted Multiobjective MARL for Trajectory Planning and Task Offloading in Multi-UAV-Assisted MEC

计算机科学 任务(项目管理) 弹道 实时计算 计算机网络 系统工程 工程类 物理 天文
作者
Zhen Gao,Jiaming Fu,Zongming Jing,Yu Dai,Lei Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 18483-18502 被引量:5
标识
DOI:10.1109/jiot.2024.3362988
摘要

Existing joint trajectory planning and task offloading (JTPTO) methods provide ultra-low latency services for mobile devices (MDs) in unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC). However, UAVs typically provide services to MDs under partial observation, leading to challenges in achieving optimal service performance due to information loss. Moreover, the JTPTO problem typically involves multi-objective optimization, which is challenging because the objectives may conflict with each other. In this paper, we present a decentralized JTPTO method based on Multi-Objective and Independently Predicted Communication Multi-Agent Actor-Critic (MOIPCMAAC). First, an IPC network is designed to facilitate UAV agents in learning a prior for communication between UAVs. UAV agents learn this prior through causal reasoning, which represents the mapping of UAV's observation to the level of confidence in choosing communication partners. The effect of one UAV on another UAV is predicted through the critic-network in multi-agent reinforcement learning (MARL) and measured to indicate the necessity of UAV-UAV communication. Further, we regularize JTPTO policies to more effectively utilize exchanged messages. Second, a generalized variant of the Bellman optimality operator with multiple objectives is applied to address the JTPTO problem. We use it to learn a single parameterized expression that encompasses all the best JTPTO policies across the space of preferences. Experiments show that compared to existing solutions, MOIPC-MAAC reduces system costs by 14.23%~19.56% and the communication cost to approximately 11.23%. Moreover, compared to training from scratch, MOIPC-MAAC accelerates the adaptation of new JTPTO tasks with unknown preferences by 13.12%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一谩发布了新的文献求助10
刚刚
芋圆葡萄发布了新的文献求助20
1秒前
3927456843应助wanghhh采纳,获得20
3秒前
lalala发布了新的文献求助10
4秒前
6秒前
脑洞疼应助一谩采纳,获得10
7秒前
聪慧道罡完成签到,获得积分20
8秒前
留猪完成签到,获得积分10
8秒前
Sue完成签到 ,获得积分10
9秒前
科研通AI5应助Kuhaku采纳,获得10
10秒前
mujin完成签到,获得积分10
10秒前
小二郎应助haul采纳,获得10
13秒前
梦里完成签到,获得积分20
14秒前
tianzml0应助美好斓采纳,获得10
14秒前
yyj完成签到,获得积分10
15秒前
16秒前
huokai完成签到,获得积分10
16秒前
17秒前
19秒前
20秒前
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI5应助huokai采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
美伢完成签到,获得积分10
21秒前
21秒前
烟花应助小北采纳,获得10
22秒前
22秒前
我是帅哥发布了新的文献求助10
22秒前
李爱国应助甜甜诗筠采纳,获得10
22秒前
23秒前
YYZX发布了新的文献求助10
23秒前
cc完成签到 ,获得积分20
24秒前
haul发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4403975
求助须知:如何正确求助?哪些是违规求助? 3890286
关于积分的说明 12107394
捐赠科研通 3535070
什么是DOI,文献DOI怎么找? 1939681
邀请新用户注册赠送积分活动 980593
科研通“疑难数据库(出版商)”最低求助积分说明 877350