卷积(计算机科学)
计算机科学
空格(标点符号)
计算机图形学(图像)
计算机视觉
人工智能
遥感
地质学
人工神经网络
操作系统
作者
Pei-Hsiang Hsu,Pei‐Jun Lee,Trong-An Bui,Yi-Shau Chou
标识
DOI:10.1109/icce59016.2024.10444386
摘要
Detecting tiny objects in remote sensing images presents a significant challenge, especially moving vehicles or ships smaller than $32 \times 32$ pixels. This paper uses Space-to-depth Convolution (SPD-Conv), an architecture design to increase feature extraction of tiny objects. Additionally, the proposed network adopts four detection heads to enhance the tiny object bounding boxes. Compared to the baseline model the proposed network increases by 14.3% of Average Precision at 50% intersection over union (AP50).
科研通智能强力驱动
Strongly Powered by AbleSci AI