Tire noise prediction based on transfer learning and multi-modal fusion

情态动词 噪音(视频) 融合 计算机科学 人工智能 声学 材料科学 物理 语言学 哲学 高分子化学 图像(数学)
作者
Chen Liang,Mingrui Hao,Ya‐Ching Shen,H. H. Li,Junwei Fan
标识
DOI:10.1177/09544070241232606
摘要

Vehicle traffic noise has become an important factor in urban noise pollution. With the increase in the number of new-energy vehicles, the current situation of tire/road noise as one of the main noise sources of automobiles is becoming increasingly prominent. Tire noise prediction is the basis for optimizing the design of low-noise tires, providing a reference basis for tire design with low-noise performance. This paper used deep learning methods to predict the noise performance of TBR radial tires. We obtained descriptive statistical features of tire structure and tread pattern images as input to the model, and used measured tire/road noise as output, then we constructed a multi-modal tire noise dataset. Comparing the prediction performance of three pre-trained transfer models such as Resnet18, VGG16, and Inception V3 on the tire pattern images, the Resnet18 had the best prediction effect. Resnet18 was selected as a feature extractor to extract image features, which fuse with the tire structural features at the feature level. The experiment constructed the TLMF-TRNP model to predict tire noise. The experimental results of the TLMF-TRNP model indicated that RMSE, MAE, and R 2 were 0.1337, 0.0948, and 0.9864 respectively, achieving ideal prediction accuracy on a small-scale tire noise dataset and controlling the absolute error of the test tires within ±0.4 dB effectively. An accurate tire noise prediction model will provide a theoretical basis for tire design with low noise tires.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyy完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
Beth完成签到,获得积分10
1秒前
1秒前
科研通AI5应助十一采纳,获得10
2秒前
鲅鱼圈完成签到,获得积分10
2秒前
2秒前
lee完成签到,获得积分10
3秒前
李科生完成签到,获得积分10
3秒前
3秒前
NexusExplorer应助naturehome采纳,获得10
4秒前
~~完成签到,获得积分10
4秒前
内向书白完成签到,获得积分10
4秒前
4秒前
科研助手6应助小周采纳,获得10
4秒前
梦里繁花完成签到,获得积分10
4秒前
高兴的玉米完成签到,获得积分10
5秒前
李科生发布了新的文献求助10
6秒前
6秒前
滴滴哒完成签到,获得积分10
6秒前
6秒前
王莫为发布了新的文献求助10
7秒前
Nozomi完成签到,获得积分10
7秒前
阿波呲的额佛歌完成签到,获得积分10
7秒前
MYN发布了新的文献求助10
8秒前
阿南发布了新的文献求助30
8秒前
madarawang发布了新的文献求助10
8秒前
9秒前
spike发布了新的文献求助10
10秒前
SYLH应助强壮的美女采纳,获得10
10秒前
jscr发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
叶天宇完成签到,获得积分10
11秒前
派大星发布了新的文献求助10
11秒前
11秒前
斯文尔阳发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785428
求助须知:如何正确求助?哪些是违规求助? 3330961
关于积分的说明 10249349
捐赠科研通 3046441
什么是DOI,文献DOI怎么找? 1672000
邀请新用户注册赠送积分活动 800943
科研通“疑难数据库(出版商)”最低求助积分说明 759905