Multiplexed Surface Protein Detection and Cancer Classification Using Gap-Enhanced Magnetic–Plasmonic Core–Shell Raman Nanotags and Machine Learning Algorithm

多路复用 拉曼散射 人工智能 乳腺癌 材料科学 拉曼光谱 机器学习 癌症 算法 计算机科学 纳米技术 生物 生物信息学 物理 光学 遗传学
作者
Alberto Luis Rodriguez-Nieves,Mitchell Lee Taylor,Raymond Wilson,Brinton King Eldridge,Samadhi Nawalage,Assam Annamer,H. Miller,Madhusudhan Alle,Saghar Gomrok,Dongmao Zhang,Yongmei Wang,Xiaohua Huang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (2): 2041-2057 被引量:11
标识
DOI:10.1021/acsami.3c13921
摘要

Cancer is the second leading cause of death attributed to disease worldwide. Current standard detection methods often rely on a single cancer marker, which can lead to inaccurate results, including false negatives, and an inability to detect multiple cancers simultaneously. Here, we developed a multiplex method that can effectively detect and classify surface proteins associated with three distinct types of breast cancer by utilizing gap-enhanced Raman scattering nanotags and machine learning algorithm. We synthesized anisotropic magnetic core-gold shell gap-enhanced Raman nanotags incorporating three different Raman reporters. These multicolor Raman nanotags were employed to distinguish specific surface protein markers in breast cancer cells. The acquired signals were deconvoluted and analyzed using classical least-squares regression to generate a surface protein profile and characterize the breast cancer cells. Furthermore, computational data obtained via finite-difference time-domain and discrete dipole approximation showed the amplification of the electric fields within the gap region due to plasmonic coupling between the two gold layers. Finally, a random forest classifier achieved an impressive classification and profiling accuracy of 93.9%, enabling effective distinguishing between the three different types of breast cancer cell lines in a mixed solution. With the combination of immunomagnetic multiplex target specificity and separation, gap-enhancement Raman nanotags, and machine learning, our method provides an accurate and integrated platform to profile and classify different cancer cells, giving implications for identification of the origin of circulating tumor cells in the blood system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专一的平卉完成签到,获得积分10
刚刚
懂123完成签到,获得积分20
刚刚
NNUsusan发布了新的文献求助10
1秒前
科研通AI2S应助康嘉伟采纳,获得10
1秒前
1秒前
传奇3应助yy采纳,获得10
2秒前
吃饱了撑的关注了科研通微信公众号
2秒前
77发布了新的文献求助200
2秒前
高大的阑香完成签到,获得积分20
2秒前
3秒前
可乐完成签到,获得积分10
3秒前
锅贴儿完成签到,获得积分20
3秒前
小宇子发布了新的文献求助10
4秒前
joasuka完成签到,获得积分10
5秒前
大脚完成签到,获得积分10
6秒前
三十三完成签到,获得积分10
6秒前
充电宝应助辛勤的绮兰采纳,获得10
6秒前
Aries发布了新的文献求助10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
he发布了新的文献求助10
9秒前
万能图书馆应助安静代萱采纳,获得10
9秒前
且慢应助L~采纳,获得20
9秒前
不安的斑马完成签到,获得积分10
10秒前
HMO_eee完成签到,获得积分10
11秒前
ocag发布了新的文献求助10
11秒前
嘤嘤嘤发布了新的文献求助10
11秒前
玛卡巴卡发布了新的文献求助10
11秒前
隐形曼青应助木沐采纳,获得10
11秒前
12秒前
康嘉伟发布了新的文献求助10
12秒前
善学以致用应助傲娇时光采纳,获得10
12秒前
季世坤完成签到,获得积分10
13秒前
失去记忆的金鱼完成签到,获得积分10
13秒前
小二郎应助悟空采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474847
求助须知:如何正确求助?哪些是违规求助? 4576539
关于积分的说明 14358669
捐赠科研通 4504561
什么是DOI,文献DOI怎么找? 2468311
邀请新用户注册赠送积分活动 1455890
关于科研通互助平台的介绍 1429762