Multi-Interaction Trajectory Prediction Method With Serial Attention Patterns for Intelligent Vehicles

弹道 计算机科学 自编码 GSM演进的增强数据速率 潜变量 对偶(语法数字) 人工智能 驾驶模拟器 机制(生物学) 模拟 人工神经网络 艺术 哲学 物理 文学类 认识论 天文
作者
Shoutao Li,Jialin Li,Qingyu Meng,Hongyan Guo,Dongpu Cao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (6): 7517-7531 被引量:8
标识
DOI:10.1109/tvt.2024.3349601
摘要

Accurately predicting the trajectories of vehicles in a driving environment composed of various traffic participants is very significant for the driving safety of intelligent vehicles. The critical difficulties of trajectory prediction lie in clarifying the interaction between traffic participants and describing the uncertainty of a vehicle's driving intention. This article proposes a vehicle trajectory prediction method based on the combination of a serial dual attention mechanism and a sampling generation model in graph structure mode. The serial dual attention mechanism describes the impact of different types of traffic participants on the vehicle. The edge attention mechanism in the serial structure considers the features of nodes and the direction of interaction simultaneously to analyse the vehicle's degree of attention to each agent of the same kind of traffic participant. In addition, a driving intention representation module based on a conditional variational autoencoder (CVAE) maps the aggregated features of the vehicle and its surrounding nodes into the latent variable space to describe the distribution of the vehicle's driving intention. Experimental results on the nuScenes dataset indicate that our method is superior to state-of-the-art prediction frameworks. Our method can consider the impact of traffic participants on the vehicle at different levels and reasonably predict the multimodal trajectory of the vehicle according to its driving intention. The result of the real-vehicle experiment shows that our method can guarantee high prediction accuracy in the practical application as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒柒止步完成签到 ,获得积分10
1秒前
bkagyin应助压缩采纳,获得10
1秒前
木穹完成签到,获得积分0
2秒前
可爱的函函应助LiYong采纳,获得10
2秒前
我爱学习完成签到,获得积分10
2秒前
orixero应助江湖樊南生采纳,获得10
3秒前
CipherSage应助开放的秋玲采纳,获得10
3秒前
4秒前
qw1完成签到,获得积分20
5秒前
xyg发布了新的文献求助10
6秒前
Akim应助智智采纳,获得10
8秒前
8秒前
KSung发布了新的文献求助10
8秒前
T拐拐发布了新的文献求助10
9秒前
善学以致用应助ff采纳,获得10
10秒前
10秒前
英姑应助cruise采纳,获得10
10秒前
Carmen发布了新的文献求助10
11秒前
dongtan完成签到 ,获得积分10
11秒前
12秒前
喜悦一德发布了新的文献求助10
12秒前
bkagyin应助云泥采纳,获得10
12秒前
14秒前
qw1发布了新的文献求助460
14秒前
压缩发布了新的文献求助10
14秒前
14秒前
善学以致用应助LiYong采纳,获得10
15秒前
小马哥完成签到,获得积分10
15秒前
mouxq发布了新的文献求助10
16秒前
刘丹丹发布了新的文献求助10
17秒前
cfyoung完成签到,获得积分10
18秒前
18秒前
水苏完成签到,获得积分10
22秒前
烟花应助what采纳,获得10
23秒前
24秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
吉祥如意完成签到 ,获得积分10
24秒前
记得吃早饭完成签到 ,获得积分10
26秒前
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445993
求助须知:如何正确求助?哪些是违规求助? 4555152
关于积分的说明 14249970
捐赠科研通 4477453
什么是DOI,文献DOI怎么找? 2453304
邀请新用户注册赠送积分活动 1444087
关于科研通互助平台的介绍 1420028