已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Zinc sulfide quantum dots modified 3D Nitrogen-Doped framework carbon enhances the ion transport rate of potassium ion hybrid capacitors

材料科学 阳极 阴极 电容器 电容 硫化物 化学工程 纳米技术 化学 电极 电气工程 工程类 物理化学 电压 冶金
作者
Shuolei Deng,Yifan Dong,Changgang Li,Wenhao Feng,Yaowen Cao,Qianqian Dou,Ziting Ma,Fan Xia
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:482: 148877-148877 被引量:3
标识
DOI:10.1016/j.cej.2024.148877
摘要

The potassium-ion hybrid capacitor (PIHC) has garnered considerable attention due to its ability to leverage the advantages of both battery-type anodes and capacitor-type cathodes simultaneously. Nevertheless, the slow K+ transfer rate between the PIHC battery-type anode and capacitor-type cathode significantly impedes the overall performance. Herein, we have employed quantum-sized zinc sulfide (ZnS) immobilized within a three-dimensional N-doped porous carbon framework (ZnSQDS@3DNC) as a standalone anode. The corresponding three-dimensional N-doped porous carbon (3DNC) serves as the cathode, thereby constructing a PIHC device. The strong coupling between ZnS quantum dots and N-doped three-dimensional porous carbon material effectively enhances ion/electron transport, facilitating intercalation-conversion-exfoliation reactions and improving K+ transfer rates. The numerous active sites within the 3DNC significantly enhance the capacitance performance of the cathode, facilitating the reversible adsorption and desorption of FSI-. The values of DK+ have all been calculated to be within the range of 10-10 to 10-9 cm2 s−1, indicating the rapid diffusion capability of this ZnSQDs@3DNC structure. More impressively, the assembled PIHC device can achieve high energy densities of 179.9 Wh kg−1 at power densities of 200 W kg−1, with an ultralong cycling life over 10,000 cycles. This study serves to advance the development of metal-ion hybrid capacitors and provides direction for improving ion transport kinetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
feng发布了新的文献求助10
3秒前
4秒前
多情蓝完成签到 ,获得积分10
4秒前
5秒前
freeway发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
橙子发布了新的文献求助10
11秒前
科研通AI5应助nicheng采纳,获得10
11秒前
灌水量完成签到,获得积分10
12秒前
大模型应助卡尔拉采纳,获得10
12秒前
13秒前
Chaos997完成签到,获得积分10
14秒前
dwz发布了新的文献求助10
14秒前
酒剑仙完成签到,获得积分10
16秒前
无花果应助橙子采纳,获得10
18秒前
SciGPT应助nanjiren采纳,获得10
18秒前
思源应助ddd采纳,获得10
19秒前
敏敏完成签到,获得积分10
19秒前
猫猫头发布了新的文献求助10
20秒前
20秒前
可爱的函函应助迅速谷槐采纳,获得10
20秒前
21秒前
小二郎应助温暖的碧彤采纳,获得10
23秒前
思源应助梦游游游采纳,获得10
24秒前
suna完成签到,获得积分10
24秒前
25秒前
天天快乐应助胡明月采纳,获得10
25秒前
27秒前
28秒前
28秒前
漫漫完成签到,获得积分10
29秒前
29秒前
研友_VZG7GZ应助Syne_采纳,获得10
30秒前
ddd发布了新的文献求助10
32秒前
cwy发布了新的文献求助10
33秒前
无花果应助XIAOMEIMA采纳,获得10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4161188
求助须知:如何正确求助?哪些是违规求助? 3696760
关于积分的说明 11673978
捐赠科研通 3388255
什么是DOI,文献DOI怎么找? 1857879
邀请新用户注册赠送积分活动 918807
科研通“疑难数据库(出版商)”最低求助积分说明 831691