Correlative Scan Matching Position Estimation Method by Fusing Visual and Radar Line Features

人工智能 计算机视觉 计算机科学 视觉里程计 雷达 雷达成像 同时定位和映射 移动机器人 机器人 电信
作者
Yang Li,Xiaoyang Cui,Yanping Wang,Jinping Sun
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (1): 114-114
标识
DOI:10.3390/rs16010114
摘要

Millimeter-wave radar and optical cameras are one of the primary sensing combinations for autonomous platforms such as self-driving vehicles and disaster monitoring robots. The millimeter-wave radar odometry can perform self-pose estimation and environmental mapping. However, cumulative errors can arise during extended measurement periods. In particular scenes where loop closure conditions are absent and visual geometric features are discontinuous, existing loop detection methods based on back-end optimization face challenges. To address this issue, this study introduces a correlative scan matching (CSM) pose estimation method that integrates visual and radar line features (VRL-SLAM). By making use of the pose output and the occupied grid map generated by the front end of the millimeter-wave radar’s simultaneous localization and mapping (SLAM), it compensates for accumulated errors by matching discontinuous visual line features and radar line features. Firstly, a pose estimation framework that integrates visual and radar line features was proposed to reduce the accumulated errors generated by the odometer. Secondly, an adaptive Hough transform line detection method (A-Hough) based on the projection of the prior radar grid map was introduced, eliminating interference from non-matching lines, enhancing the accuracy of line feature matching, and establishing a collection of visual line features. Furthermore, a Gaussian mixture model clustering method based on radar cross-section (RCS) was proposed, reducing the impact of radar clutter points online feature matching. Lastly, actual data from two scenes were collected to compare the algorithm proposed in this study with the CSM algorithm and RI-SLAM.. The results demonstrated a reduction in long-term accumulated errors, verifying the effectiveness of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小飞侠发布了新的文献求助10
刚刚
田様应助小小博采纳,获得10
刚刚
帅气的帆布鞋完成签到 ,获得积分10
2秒前
Bell完成签到,获得积分10
3秒前
Chensir发布了新的文献求助10
3秒前
顺利小笼包完成签到 ,获得积分10
4秒前
充电宝应助李孤山采纳,获得10
4秒前
生椰lattee发布了新的文献求助10
5秒前
5秒前
义气聪展发布了新的文献求助10
5秒前
6秒前
7秒前
立冬发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
Capricornus发布了新的文献求助10
12秒前
天天快乐应助高贵紫槐采纳,获得10
13秒前
满_1999发布了新的文献求助10
13秒前
14秒前
充电宝应助魁梧的乐天采纳,获得10
16秒前
义气聪展发布了新的文献求助10
17秒前
思源应助卷儿采纳,获得10
18秒前
妮妮树莓派完成签到,获得积分10
19秒前
20秒前
bhfhq完成签到,获得积分10
21秒前
Jasper应助yl采纳,获得10
21秒前
万能图书馆应助快乐科研采纳,获得10
21秒前
altair发布了新的文献求助10
24秒前
24秒前
tiantian0518完成签到 ,获得积分10
24秒前
25秒前
25秒前
正直的如凡完成签到,获得积分10
27秒前
高贵紫槐发布了新的文献求助10
29秒前
义气聪展发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
30秒前
li完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中国翻译词典 1000
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874952
求助须知:如何正确求助?哪些是违规求助? 3417415
关于积分的说明 10703334
捐赠科研通 3141782
什么是DOI,文献DOI怎么找? 1733599
邀请新用户注册赠送积分活动 836096
科研通“疑难数据库(出版商)”最低求助积分说明 782355