Evaluation of two deep learning‐based approaches for detecting weeds growing in cabbage

杂草 杂草防治 跳跃式监视 生物 农学 农业工程 机器学习 人工智能 计算机科学 工程类
作者
Hu Sun,Teng Liu,Jinxu Wang,Danlan Zhai,Jialin Yu
出处
期刊:Pest Management Science [Wiley]
卷期号:80 (6): 2817-2826 被引量:4
标识
DOI:10.1002/ps.7990
摘要

Abstract BACKGROUND Machine vision‐based precision weed management is a promising solution to substantially reduce herbicide input and weed control cost. The objective of this research was to compare two different deep learning‐based approaches for detecting weeds in cabbage: (1) detecting weeds directly, and (2) detecting crops by generating the bounding boxes covering the crops and any green pixels outside the bounding boxes were deemed as weeds. RESULTS The precision, recall, F1‐score, mAP 0.5 , mAP0 .5:0.95 of You Only Look Once (YOLO) v5 for detecting cabbage were 0.986, 0.979, 0.982, 0.995, and 0.851, respectively, while these metrics were 0.973, 0.985, 0.979, 0.993, and 0.906 for YOLOv8, respectively. However, none of these metrics exceeded 0.891 when detecting weeds. The reduced performances for directly detecting weeds could be attributed to the diverse weed species at varying densities and growth stages with different plant morphologies. A segmentation procedure demonstrated its effectiveness for extracting weeds outside the bounding boxes covering the crops, and thereby realizing effective indirect weed detection. CONCLUSION The indirect weed detection approach demands less manpower as the need for constructing a large training dataset containing a variety of weed species is unnecessary. However, in a certain case, weeds are likely to remain undetected due to their growth in close proximity with crops and being situated within the predicted bounding boxes that encompass the crops. The models generated in this research can be used in conjunction with the machine vision subsystem of a smart sprayer or mechanical weeder. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的胡萝卜完成签到 ,获得积分10
5秒前
大猪完成签到 ,获得积分10
9秒前
LLH完成签到,获得积分10
11秒前
祺王862完成签到,获得积分10
12秒前
12秒前
joleisalau发布了新的文献求助10
16秒前
冷傲老九完成签到,获得积分10
17秒前
小康找文献完成签到 ,获得积分10
20秒前
21秒前
阿童木完成签到,获得积分10
26秒前
小蘑菇应助Rafayel采纳,获得10
29秒前
hanchangcun完成签到,获得积分10
32秒前
32秒前
科研通AI5应助懦弱的难敌采纳,获得10
33秒前
MoodMeed完成签到 ,获得积分10
34秒前
sgt发布了新的文献求助10
35秒前
冷傲老九发布了新的文献求助10
37秒前
科研通AI5应助小天采纳,获得10
38秒前
47秒前
大个应助科研通管家采纳,获得10
48秒前
bkagyin应助科研通管家采纳,获得10
48秒前
48秒前
果果完成签到,获得积分10
48秒前
PangSir完成签到,获得积分10
51秒前
52秒前
焰火青年发布了新的文献求助30
53秒前
拉布拉多多不多完成签到,获得积分10
1分钟前
asplD完成签到,获得积分10
1分钟前
xiaoxiao完成签到 ,获得积分10
1分钟前
星辰大海应助老秦采纳,获得10
1分钟前
yuan发布了新的文献求助10
1分钟前
Orange应助hunajx采纳,获得10
1分钟前
研友_RLNzvL发布了新的文献求助30
1分钟前
123.完成签到 ,获得积分10
1分钟前
我见青山完成签到,获得积分10
1分钟前
1分钟前
无限的千凝完成签到 ,获得积分10
1分钟前
1分钟前
老秦发布了新的文献求助10
1分钟前
kyJYbs发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777983
求助须知:如何正确求助?哪些是违规求助? 3323609
关于积分的说明 10215097
捐赠科研通 3038781
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315