气凝胶
电池(电)
材料科学
电极
阴极
碳纤维
电化学
化学工程
多孔性
氧气
复合材料
纳米技术
化学
有机化学
量子力学
物理
功率(物理)
工程类
复合数
物理化学
作者
Anant Prakash Pandey,Bharti Rani,Minakshi Sharma,Jitendra Kumar Yadav,Priyanka Saini,Shalu Shalu,Ambesh Dixit
摘要
Abstract One of the greatest alternatives to Li‐ion batteries is an Al‐air battery as it is more economically feasible and less toxic together with relatively better electrochemical performance. The design of the cell and the selection of electrode for improved electrochemical performance are the primary factors influencing the performance of the Al‐air battery. The present study focuses on designing an efficient air cathode host to lengthen the battery's lifespan using highly porous carbon aerogel. Initially, the carbon aerogel (CA) material is synthesized using sol‐gel polymerization process and characterized using XRD, RAMAN, SEM, and BET. The synthesized CA is used to fabricate the electrode stacking using the in‐house‐built Al‐air cell. The performance of carbon aerogel coated on carbon cloth as air cathode has been evaluated using a galvanostatic discharge of the assembly at different current rates, and the specific capacity is recorded. The highest specific capacity observed is ~683 mAh g −1 at 2.551 mA cm −2 current density. The acquired results demonstrate the superiority of the present electrodes material compared to currently used air electrode. The improved electrochemical stability and the robust pore network in CA allow oxygen to pass through the cathode end for chemical reaction. Overall, this enhances kinetics and makes the interactions between oxygen and aluminum easier to generate higher current.
科研通智能强力驱动
Strongly Powered by AbleSci AI