亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advancing Spiking Neural Networks Toward Deep Residual Learning

尖峰神经网络 残余物 神经形态工程学 失败 残差神经网络 深度学习 人工智能 可扩展性 计算机科学 人工神经网络 依赖关系(UML) 机器学习 深层神经网络 范围(计算机科学) 模式识别(心理学) 并行计算 算法 数据库 程序设计语言
作者
Yifan Hu,Lei Deng,Yujie Wu,Man Yao,Guoqi Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2353-2367 被引量:29
标识
DOI:10.1109/tnnls.2024.3355393
摘要

Despite the rapid progress of neuromorphic computing, inadequate capacity and insufficient representation power of spiking neural networks (SNNs) severely restrict their application scope in practice. Residual learning and shortcuts have been evidenced as an important approach for training deep neural networks, but rarely did previous work assessed their applicability to the specifics of SNNs. In this article, we first identify that this negligence leads to impeded information flow and the accompanying degradation problem in a spiking version of vanilla ResNet. To address this issue, we propose a novel SNN-oriented residual architecture termed MS-ResNet, which establishes membrane-based shortcut pathways, and further proves that the gradient norm equality can be achieved in MS-ResNet by introducing block dynamical isometry theory, which ensures the network can be well-behaved in a depth-insensitive way. Thus, we are able to significantly extend the depth of directly trained SNNs, e.g., up to 482 layers on CIFAR-10 and 104 layers on ImageNet, without observing any slight degradation problem. To validate the effectiveness of MS-ResNet, experiments on both frame-based and neuromorphic datasets are conducted. MS-ResNet104 achieves a superior result of 76.02% accuracy on ImageNet, which is the highest to the best of our knowledge in the domain of directly trained SNNs. Great energy efficiency is also observed, with an average of only one spike per neuron needed to classify an input sample. We believe our powerful and scalable models will provide strong support for further exploration of SNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wen完成签到,获得积分10
1秒前
32秒前
平常的三问完成签到 ,获得积分10
38秒前
56秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
铜锣湾新之助完成签到 ,获得积分10
2分钟前
冬去春来完成签到 ,获得积分10
2分钟前
Sunny完成签到,获得积分10
3分钟前
3分钟前
Dravia完成签到,获得积分20
3分钟前
3分钟前
千里草完成签到,获得积分10
4分钟前
4分钟前
4分钟前
juan完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
实力不允许完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
5分钟前
英喆完成签到 ,获得积分10
5分钟前
5分钟前
dragonking520完成签到,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
汉堡包应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
8分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922146
求助须知:如何正确求助?哪些是违规求助? 3466855
关于积分的说明 10945511
捐赠科研通 3195777
什么是DOI,文献DOI怎么找? 1765860
邀请新用户注册赠送积分活动 855784
科研通“疑难数据库(出版商)”最低求助积分说明 795104