Machine‐learning model comprising five clinical indices and liver stiffness measurement can accurately identify MASLD‐related liver fibrosis

肝硬化 医学 内科学 胃肠病学 纤维化 逻辑回归 肝细胞癌 肝纤维化
作者
Rong Fan,Ning Yu,Guanlin Li,Tamoore Arshad,Wen‐Yue Liu,Grace Lai–Hung Wong,Xieer Liang,Yongpeng Chen,Xiaozhi Jin,Howard Ho‐Wai Leung,Jinjun Chen,Xiaodong Wang,Terry Cheuk‐Fung Yip,Arun J. Sanyal,Jian Sun,Vincent Wai–Sun Wong,Ming‐Hua Zheng,Jinlin Hou
出处
期刊:Liver International [Wiley]
卷期号:44 (3): 749-759 被引量:7
标识
DOI:10.1111/liv.15818
摘要

Abstract Background & Aims aMAP score, as a hepatocellular carcinoma risk score, is proven to be associated with the degree of chronic hepatitis B‐related liver fibrosis. We aimed to evaluate the ability of aMAP score for metabolic dysfunction‐associated steatotic liver disease (MASLD; formerly NAFLD)‐related fibrosis diagnosis and establish a machine‐learning (ML) model to improve the diagnostic performance. Methods A total of 946 biopsy‐proved MASLD patients from China and the United States were included in the analysis. The aMAP score, demographic/clinical indices and liver stiffness measurement (LSM) were included in seven ML algorithms to build fibrosis diagnostic models in the training set ( N = 703). The performance of ML models was evaluated in the external validation set ( N = 125). Results The AUROCs of aMAP versus fibrosis‐4 index (FIB‐4) and aspartate aminotransferase‐platelet ratio (APRI) in cirrhosis and advanced fibrosis were (0.850 vs. 0.857 [ P = 0.734], 0.735 [ P = 0.001]) and (0.759 vs. 0.795 [ P = 0.027], 0.709 [ P = 0.049]). When using dual cut‐off values, aMAP had a smaller uncertainty area and higher accuracy (26.9%, 86.6%) than FIB‐4 (37.3%, 85.0%) and APRI (59.0%, 77.3%) in cirrhosis diagnosis. The seven ML models performed satisfactorily in most cases. In the validation set, the ML model comprising LSM and 5 indices (including age, sex, platelets, albumin and total bilirubin used in aMAP calculator), built by logistic regression algorithm (called LSM‐plus model), exhibited excellent performance. In cirrhosis and advanced fibrosis detection, the LSM‐plus model had higher accuracy (96.8%, 91.2%) than LSM alone (86.4%, 67.2%) and Agile score (76.0%, 83.2%), respectively. Additionally, the LSM‐plus model also displayed high specificity (cirrhosis: 98.3%; advanced fibrosis: 92.6%) with satisfactory AUROC (0.932, 0.875, respectively) and sensitivity (88.9%, 82.4%, respectively). Conclusions The aMAP score is capable of diagnosing MASLD‐related fibrosis. The LSM‐plus model could accurately identify MASLD‐related cirrhosis and advanced fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hmbb完成签到,获得积分10
刚刚
帅气的可乐完成签到,获得积分10
刚刚
青山落日秋月春风完成签到,获得积分10
刚刚
繁星与北斗完成签到,获得积分10
刚刚
细致且入微完成签到,获得积分10
刚刚
brian0326发布了新的文献求助10
1秒前
八九发布了新的文献求助10
1秒前
fhw发布了新的文献求助200
1秒前
栗子完成签到 ,获得积分10
2秒前
FashionBoy应助积极的初南采纳,获得10
2秒前
灵巧的导师完成签到,获得积分10
3秒前
斯文败类应助翼静采纳,获得10
3秒前
舒适的紫丝完成签到,获得积分10
3秒前
你说要叫啥完成签到,获得积分10
4秒前
静静子发布了新的文献求助10
4秒前
顺心紫翠完成签到 ,获得积分10
4秒前
在水一方应助麦芒拾音柴采纳,获得10
5秒前
5秒前
Kakoala发布了新的文献求助10
6秒前
鲁鲁完成签到,获得积分10
7秒前
zhx完成签到,获得积分10
7秒前
朱权圣完成签到,获得积分10
8秒前
Laisy完成签到,获得积分10
8秒前
Jack完成签到,获得积分10
9秒前
明理萃完成签到 ,获得积分10
9秒前
9秒前
科研通AI5应助舒适路人采纳,获得10
9秒前
9秒前
Twikky完成签到,获得积分10
9秒前
执着跳跳糖完成签到 ,获得积分10
10秒前
小橙子完成签到,获得积分10
10秒前
wure10完成签到 ,获得积分10
10秒前
10秒前
郑波涛完成签到,获得积分10
11秒前
1609855535完成签到,获得积分10
11秒前
11秒前
hoongyan完成签到 ,获得积分10
11秒前
12秒前
拜拜雪公主完成签到 ,获得积分10
12秒前
一只百味鸡完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785022
求助须知:如何正确求助?哪些是违规求助? 3330388
关于积分的说明 10245821
捐赠科研通 3045781
什么是DOI,文献DOI怎么找? 1671722
邀请新用户注册赠送积分活动 800709
科研通“疑难数据库(出版商)”最低求助积分说明 759621