已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine‐learning model comprising five clinical indices and liver stiffness measurement can accurately identify MASLD‐related liver fibrosis

肝硬化 医学 内科学 胃肠病学 纤维化 逻辑回归 肝细胞癌 肝纤维化
作者
Rong Fan,Ning Yu,Guanlin Li,Tamoore Arshad,Wen‐Yue Liu,Grace Lai‐Hung Wong,Xieer Liang,Yongpeng Chen,Xiaozhi Jin,Howard H.W. Leung,Jinjun Chen,Xiaodong Wang,Terry Cheuk‐Fung Yip,Arun J. Sanyal,Jian Sun,Vincent Wai‐Sun Wong,Ming‐Hua Zheng,Jinlin Hou
出处
期刊:Liver International [Wiley]
卷期号:44 (3): 749-759 被引量:16
标识
DOI:10.1111/liv.15818
摘要

Abstract Background & Aims aMAP score, as a hepatocellular carcinoma risk score, is proven to be associated with the degree of chronic hepatitis B‐related liver fibrosis. We aimed to evaluate the ability of aMAP score for metabolic dysfunction‐associated steatotic liver disease (MASLD; formerly NAFLD)‐related fibrosis diagnosis and establish a machine‐learning (ML) model to improve the diagnostic performance. Methods A total of 946 biopsy‐proved MASLD patients from China and the United States were included in the analysis. The aMAP score, demographic/clinical indices and liver stiffness measurement (LSM) were included in seven ML algorithms to build fibrosis diagnostic models in the training set ( N = 703). The performance of ML models was evaluated in the external validation set ( N = 125). Results The AUROCs of aMAP versus fibrosis‐4 index (FIB‐4) and aspartate aminotransferase‐platelet ratio (APRI) in cirrhosis and advanced fibrosis were (0.850 vs. 0.857 [ P = 0.734], 0.735 [ P = 0.001]) and (0.759 vs. 0.795 [ P = 0.027], 0.709 [ P = 0.049]). When using dual cut‐off values, aMAP had a smaller uncertainty area and higher accuracy (26.9%, 86.6%) than FIB‐4 (37.3%, 85.0%) and APRI (59.0%, 77.3%) in cirrhosis diagnosis. The seven ML models performed satisfactorily in most cases. In the validation set, the ML model comprising LSM and 5 indices (including age, sex, platelets, albumin and total bilirubin used in aMAP calculator), built by logistic regression algorithm (called LSM‐plus model), exhibited excellent performance. In cirrhosis and advanced fibrosis detection, the LSM‐plus model had higher accuracy (96.8%, 91.2%) than LSM alone (86.4%, 67.2%) and Agile score (76.0%, 83.2%), respectively. Additionally, the LSM‐plus model also displayed high specificity (cirrhosis: 98.3%; advanced fibrosis: 92.6%) with satisfactory AUROC (0.932, 0.875, respectively) and sensitivity (88.9%, 82.4%, respectively). Conclusions The aMAP score is capable of diagnosing MASLD‐related fibrosis. The LSM‐plus model could accurately identify MASLD‐related cirrhosis and advanced fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lx完成签到,获得积分10
1秒前
2秒前
123发布了新的文献求助10
3秒前
322628发布了新的文献求助10
3秒前
4秒前
2306520发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
goncalo24完成签到,获得积分10
7秒前
Singularity应助超级万声采纳,获得10
7秒前
共享精神应助TaoJ采纳,获得10
8秒前
科研通AI6.1应助董董采纳,获得10
8秒前
一灯完成签到 ,获得积分10
9秒前
TTTT发布了新的文献求助10
9秒前
明亮惜天发布了新的文献求助10
9秒前
2306520完成签到,获得积分10
9秒前
大模型应助舒适新梅采纳,获得10
10秒前
123完成签到,获得积分10
11秒前
mmyhn发布了新的文献求助10
12秒前
12秒前
13秒前
lx完成签到 ,获得积分10
15秒前
whereisit完成签到,获得积分10
15秒前
15秒前
吃鱼的猫完成签到,获得积分10
16秒前
宋文玥发布了新的文献求助10
16秒前
meiyi发布了新的文献求助10
16秒前
丘比特应助石榴汁的书采纳,获得10
16秒前
17秒前
17秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
研小白发布了新的文献求助10
23秒前
科研通AI6.1应助Xiaoli采纳,获得10
24秒前
TaoJ发布了新的文献求助10
24秒前
大马哈鱼发布了新的文献求助10
26秒前
张小鱼不是鱼完成签到,获得积分20
26秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779215
求助须知:如何正确求助?哪些是违规求助? 5646297
关于积分的说明 15451448
捐赠科研通 4910636
什么是DOI,文献DOI怎么找? 2642783
邀请新用户注册赠送积分活动 1590462
关于科研通互助平台的介绍 1544831