丝裂霉素C
体内
细胞凋亡
脂质体
癌症研究
联合疗法
药理学
肿瘤细胞
毒性
医学
化学
生物
内科学
外科
生物化学
生物技术
作者
Rui Chang,Rongrong Fu,Yujiao Huang,Jibing Zhang,Changshun Feng,Rui Wang,Hui Yan,Guangyong Li,Xiaohong Chu,Fengjiao Yuan,Dianlong Jia,Jun Li
标识
DOI:10.1021/acs.molpharmaceut.2c01013
摘要
Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) constitutes a promising antitumor drug, tumor resistance to TRAIL has become a major obstacle in its clinical application. Mitomycin C (MMC) is an effective TRAIL-resistant tumor sensitizer, which indicates a potential utility of combination therapy. However, the efficacy of this combination therapy is limited owing to its short half-life and the cumulative toxicity of MMC. To address these issues, we successfully developed a multifunctional liposome (MTLPs) with human TRAIL protein on the surface and MMC encapsulated in the internal aqueous phase to codeliver TRAIL and MMC. MTLPs are uniform spherical particles that exhibit efficient cellular uptake by HT-29 TRAIL-resistant tumor cells, thereby inducing a stronger killing effect compared with control groups. In vivo assays revealed that MTLPs efficiently accumulated in tumors and safely achieved 97.8% tumor suppression via the synergistic effect of TRAIL and MMC in an HT-29 tumor xenograft model while ensuring biosafety. These results suggest that the liposomal codelivery of TRAIL and MMC provides a novel approach to overcome TRAIL-resistant tumors.
科研通智能强力驱动
Strongly Powered by AbleSci AI