掺杂剂
材料科学
苯并咪唑
分子轨道
兴奋剂
轨道能级差
塞贝克系数
密度泛函理论
结晶度
电子顺磁共振
化学物理
计算化学
光电子学
核磁共振
分子
化学
有机化学
物理
热导率
复合材料
作者
Sergi Riera‐Galindo,Alessio Orbelli Biroli,Alessandra Forni,Yuttapoom Puttisong,Francesca Tessore,Maddalena Pizzotti,Eleni Pavlopoulou,Eduardo Solano,Suhao Wang,Gang Wang,Tero‐Petri Ruoko,Weimin Chen,Martijn Kemerink,Magnus Berggren,Gabriele Di Carlo,Simone Fabiano
标识
DOI:10.1021/acsami.9b12441
摘要
We investigated the impact of singly occupied molecular orbital (SOMO) energy on the n-doping efficiency of benzimidazole derivatives. By designing and synthesizing a series of new air-stable benzimidazole-based dopants with different SOMO energy levels, we demonstrated that an increase of the dopant SOMO energy by only ∼0.3 eV enhances the electrical conductivity of a benchmark electron-transporting naphthalenediimide-bithiophene polymer by more than 1 order of magnitude. By combining electrical, X-ray diffraction, and electron paramagnetic resonance measurements with density functional theory calculations and analytical transport simulations, we quantitatively characterized the conductivity, Seebeck coefficient, spin density, and crystallinity of the doped polymer as a function of the dopant SOMO energy. Our findings strongly indicate that charge and energy transport are dominated by the (relative) position of the SOMO level, whereas morphological differences appear to play a lesser role. These results set molecular-design guidelines for next-generation n-type dopants.
科研通智能强力驱动
Strongly Powered by AbleSci AI