亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Resolving Potential-Dependent Degradation of Electrodeposited Ni(OH)2 Catalysts in Alkaline Oxygen Evolution Reaction (OER): In Situ XANES Studies

过电位 氧烷 催化作用 析氧 降级(电信) 循环伏安法 化学 碳纤维 无机化学 氧化还原 材料科学 化学工程 电化学 电极 光谱学 物理化学 有机化学 复合材料 物理 复合数 电信 量子力学 计算机科学 工程类
作者
Sang Yeon Lee,Ik-Sun Kim,Hyun‐Seok Cho,Changhee Kim,Yong-Kul Lee
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:284: 119729-119729 被引量:116
标识
DOI:10.1016/j.apcatb.2020.119729
摘要

The activation and degradation mechanism of Ni-LDH catalysts electrodeposited on low and high-density carbon papers for the oxygen evolution reaction (OER) in alkaline media was investigated using in situ X-ray absorption near-edge structure (XANES) spectroscopy coupled with CV cycles in a potential range of 0–0.9 V (vs Hg/HgO), which allowed proposing two-stage degradation mechanisms with respect to cyclic voltammetry (CV) cycles. The electrodeposited α-Ni(OH)2 is firstly transformed to γ-NiOOH as an active phase in OER. In the reducible potential region, however, γ-NiOOH was partially reduced to β-Ni(OH)2, isolating the rest, which is the first stage of degradation. In the following anodic potential region, β-Ni(OH)2 is readily converted to β-NiOOH, which is mostly reversible, but only a small portion of β-NiOOH is overcharged to unstable γ-NiOOH, being responsible for the second stage degradation. It was noted that Ni(OH)2 catalysts electrodeposited on a low-density carbon paper (Ni-LC) underwent a severe degradation in the first stage, losing at least 56.9 % current density at 0.65 V (vs Hg/HgO), followed by a steady degradation in the second stage, while the use of a high-density carbon substrate (Ni−HC) effectively improved redox stability, maintaining a minimal loss of overpotential less than 5%, particularly with the second stage degradation being negligible even under potential changes, providing an important insight into designing durable and active Ni-LDH catalysts for the OER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Epiphany完成签到,获得积分10
3秒前
7秒前
上官若男应助温婉的凝雁采纳,获得10
16秒前
Alvin完成签到 ,获得积分10
17秒前
温婉的凝雁完成签到,获得积分10
22秒前
28秒前
59秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
王玉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Cherry发布了新的文献求助10
1分钟前
1分钟前
昌莆完成签到 ,获得积分10
1分钟前
1分钟前
冉亦完成签到,获得积分10
2分钟前
搜集达人应助null采纳,获得10
2分钟前
可爱的函函应助香菜肉丸采纳,获得10
2分钟前
2分钟前
平淡映秋发布了新的文献求助10
2分钟前
focus完成签到 ,获得积分10
2分钟前
香菜肉丸发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
犬来八荒发布了新的文献求助10
3分钟前
simple1完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Cherry发布了新的文献求助10
3分钟前
charih完成签到 ,获得积分10
3分钟前
3分钟前
CodeCraft应助犬来八荒采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091