亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of dementia subtypes based on a diffusion MRI multi-model approach

鉴定(生物学) 磁共振弥散成像 扩散 计算机科学 痴呆 人工智能 磁共振成像 医学 放射科 病理 物理 疾病 生物 植物 热力学
作者
Rajikha Raja,Arvind Caprihan,Gary A. Rosenberg,Vince D. Calhoun
标识
DOI:10.1117/12.2549279
摘要

Dementia refers to symptoms associated with cognitive decline which is widespread in aging population. Among the various subtypes of dementia, Alzheimer's disease (AD) and vascular cognitive impairment (VCI) are the two most prevalent types. The main aim of this study is to identify biomarkers which could accurately distinguish between the two dementia subtypes, AD and VCI, in order to aid the physician in planning disease specific treatments. Diffusion weighted MRI (DW-MRI) studies have been widely reported in neuroimaging research as an efficient biomarker in identifying the pathologies associated with dementia. Generally, these studies utilize the metrics estimated from a specific DW-MRI model. For the first time, we attempted to use diffusion derived metrics from more than a single model through fusion technique. In this study, the metrics from two well known DW-MRI models such as diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) are fused using a multiset canonical correlation analysis combined with joint independent component analysis (mCCA+jICA) fusion framework to investigate the potential differences between AD and VCI groups. The participants include 35 healthy controls, 24 AD subjects and 23 VCI subjects. DWMRI data acquired with maximum b-value greater than or equal to 2000 s/mm2 which is suitable for DKI fitting. DTI derived metrics such as mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AxD) and radial diffusivity (RD) and DKI metrics such as mean kurtosis (MK), axial kurtosis (AK) and radial kurtosis (RK) are the diffusion features fused to obtain 8 independent components for each feature along with corresponding mixing coefficients. Performance of the proposed multi-model fusion framework is evaluated by comparing the group level testing carried out on features from individual diffusion models with the fused features from proposed method. Results showed that fusion methodology outperformed conventional unimodel approach in terms of distinguishing between subject groups. Diffusion features from individual models successfully distinguished between HC and disease groups (HC Vs AD and HC Vs VCI) with a minimum p-value of 0.00123 but failed to differentiate AD and VCI. On the other hand, the group differences between mixing coefficients obtained from fusion, showed differences between all pairs of subject groups (HC Vs AD, HC Vs VCI and AD Vs VCI). The significant p-value between AD and VCI obtained was 0.000897. The independent spatial components corresponding to mixing coefficient of minimum p-value was overlapped on MNI white matter (WM) tract atlas to identify the prominent WM tracts which showed a significant difference between AD and VCI. The WM tracts thus identified were superior longitudinal fasciculus, anterior thalamic radiation, optic radiation, cingulum and arcuate fasciculus. ROC analysis showed increased area under curve for fused features (average AUC=0.913) as compared to that of unimodel features (average AUC=0.77) which shows the increased sensitivity of proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasen完成签到 ,获得积分10
4秒前
知行者完成签到 ,获得积分10
1分钟前
Li完成签到,获得积分10
1分钟前
Akim应助小平采纳,获得10
1分钟前
2分钟前
小平发布了新的文献求助10
2分钟前
2分钟前
一叶舟发布了新的文献求助10
2分钟前
一叶舟完成签到,获得积分10
2分钟前
华仔应助科研通管家采纳,获得10
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
小羊完成签到,获得积分10
5分钟前
小羊发布了新的文献求助10
5分钟前
所所应助Xin采纳,获得10
6分钟前
科研通AI5应助小羊采纳,获得10
6分钟前
6分钟前
6分钟前
Xin发布了新的文献求助10
7分钟前
哈哈哈完成签到,获得积分10
7分钟前
7分钟前
我是老大应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Xin完成签到,获得积分10
7分钟前
水水水完成签到 ,获得积分10
7分钟前
为你钟情完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
noss发布了新的文献求助10
8分钟前
小蘑菇应助依然灬聆听采纳,获得10
9分钟前
科研通AI5应助大力的千筹采纳,获得10
9分钟前
耳东陈完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
10分钟前
10分钟前
10分钟前
清爽的诗云完成签到 ,获得积分10
10分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779140
求助须知:如何正确求助?哪些是违规求助? 3324759
关于积分的说明 10219855
捐赠科研通 3039890
什么是DOI,文献DOI怎么找? 1668476
邀请新用户注册赠送积分活动 798658
科研通“疑难数据库(出版商)”最低求助积分说明 758503