A CNN-LSTM-Based Model to Forecast Stock Prices

计算机科学 股票价格 库存(枪支) 时间序列 计量经济学 人工智能 机器学习 系列(地层学) 经济 机械工程 生物 工程类 古生物学
作者
Wenjie Lu,Jiazheng Li,Yifan Li,Sun Aijun,Jingyang Wang
出处
期刊:Complexity [Hindawi Publishing Corporation]
卷期号:2020: 1-10 被引量:372
标识
DOI:10.1155/2020/6622927
摘要

Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of analyzing relationships among time series data through its memory function, we propose a forecasting method of stock price based on CNN-LSTM. In the meanwhile, we use MLP, CNN, RNN, LSTM, CNN-RNN, and other forecasting models to predict the stock price one by one. Moreover, the forecasting results of these models are analyzed and compared. The data utilized in this research concern the daily stock prices from July 1, 1991, to August 31, 2020, including 7127 trading days. In terms of historical data, we choose eight features, including opening price, highest price, lowest price, closing price, volume, turnover, ups and downs, and change. Firstly, we adopt CNN to efficiently extract features from the data, which are the items of the previous 10 days. And then, we adopt LSTM to predict the stock price with the extracted feature data. According to the experimental results, the CNN-LSTM can provide a reliable stock price forecasting with the highest prediction accuracy. This forecasting method not only provides a new research idea for stock price forecasting but also provides practical experience for scholars to study financial time series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
xbb完成签到,获得积分10
2秒前
Ava应助孝顺的雁芙采纳,获得10
3秒前
大哥大姐帮帮忙完成签到,获得积分10
3秒前
liam发布了新的文献求助10
5秒前
优雅的雁凡完成签到,获得积分10
5秒前
qqqq发布了新的文献求助10
6秒前
mark33442发布了新的文献求助10
6秒前
xxx完成签到,获得积分10
6秒前
fifi发布了新的文献求助10
7秒前
7秒前
gj完成签到,获得积分20
7秒前
JamesPei应助搞怪夏天采纳,获得10
8秒前
小怪兽完成签到,获得积分10
8秒前
qqqq完成签到,获得积分10
9秒前
不厌发布了新的文献求助20
10秒前
10秒前
风中的青完成签到,获得积分10
11秒前
11秒前
Stella完成签到,获得积分10
11秒前
Sylovia完成签到,获得积分10
11秒前
小虎同学完成签到,获得积分10
12秒前
激昂的如柏完成签到,获得积分10
13秒前
siuu发布了新的文献求助10
14秒前
15秒前
15秒前
ZZ发布了新的文献求助20
15秒前
加百莉完成签到,获得积分10
16秒前
热心观众发布了新的文献求助10
16秒前
16秒前
爆米花应助ccaa采纳,获得10
17秒前
科研通AI2S应助lina采纳,获得10
17秒前
123完成签到,获得积分10
18秒前
在水一方应助Megan萌萌萌采纳,获得10
20秒前
好好想想发布了新的文献求助10
20秒前
HJJHJH发布了新的文献求助10
21秒前
21秒前
梦梦发布了新的文献求助10
22秒前
科研通AI5应助siuu采纳,获得10
23秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801630
求助须知:如何正确求助?哪些是违规求助? 3347454
关于积分的说明 10333663
捐赠科研通 3063605
什么是DOI,文献DOI怎么找? 1681955
邀请新用户注册赠送积分活动 807820
科研通“疑难数据库(出版商)”最低求助积分说明 763921