A CNN-LSTM-Based Model to Forecast Stock Prices

计算机科学 股票价格 库存(枪支) 时间序列 计量经济学 人工智能 机器学习 系列(地层学) 经济 机械工程 生物 工程类 古生物学
作者
Wenjie Lu,Jiazheng Li,Yifan Li,Sun Aijun,Jingyang Wang
出处
期刊:Complexity [Hindawi Publishing Corporation]
卷期号:2020: 1-10 被引量:372
标识
DOI:10.1155/2020/6622927
摘要

Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of analyzing relationships among time series data through its memory function, we propose a forecasting method of stock price based on CNN-LSTM. In the meanwhile, we use MLP, CNN, RNN, LSTM, CNN-RNN, and other forecasting models to predict the stock price one by one. Moreover, the forecasting results of these models are analyzed and compared. The data utilized in this research concern the daily stock prices from July 1, 1991, to August 31, 2020, including 7127 trading days. In terms of historical data, we choose eight features, including opening price, highest price, lowest price, closing price, volume, turnover, ups and downs, and change. Firstly, we adopt CNN to efficiently extract features from the data, which are the items of the previous 10 days. And then, we adopt LSTM to predict the stock price with the extracted feature data. According to the experimental results, the CNN-LSTM can provide a reliable stock price forecasting with the highest prediction accuracy. This forecasting method not only provides a new research idea for stock price forecasting but also provides practical experience for scholars to study financial time series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
Owen应助xbk2001采纳,获得10
4秒前
美好师完成签到,获得积分10
4秒前
Lele完成签到,获得积分10
5秒前
科目三应助丢星采纳,获得10
6秒前
劈里啪啦发布了新的文献求助10
6秒前
6秒前
无花果应助妞妞采纳,获得10
7秒前
bkagyin应助Sene采纳,获得10
7秒前
草莓奶冻完成签到,获得积分10
7秒前
Yuan发布了新的文献求助10
9秒前
enppp完成签到,获得积分10
9秒前
9秒前
10秒前
领导范儿应助奋斗的小张采纳,获得10
11秒前
11秒前
11秒前
11秒前
充电宝应助轻松的飞阳采纳,获得10
12秒前
Jiang发布了新的文献求助30
14秒前
yh发布了新的文献求助10
15秒前
15秒前
li完成签到,获得积分10
16秒前
CipherSage应助Danae采纳,获得10
17秒前
野蛮生长发布了新的文献求助10
17秒前
JamesPei应助zzy采纳,获得30
18秒前
蔡蔡完成签到,获得积分10
18秒前
18秒前
碳碳焢烃发布了新的文献求助10
19秒前
19秒前
19秒前
SciGPT应助勤劳妙彤采纳,获得10
20秒前
20秒前
21秒前
22秒前
23秒前
24秒前
24秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291028
求助须知:如何正确求助?哪些是违规求助? 3818123
关于积分的说明 11957057
捐赠科研通 3461708
什么是DOI,文献DOI怎么找? 1898672
邀请新用户注册赠送积分活动 947254
科研通“疑难数据库(出版商)”最低求助积分说明 850032