闪烁体
放射发光
材料科学
量子产额
纳米晶
钙钛矿(结构)
闪烁
光电子学
荧光
光学
纳米技术
物理
化学
结晶学
探测器
作者
Sangeun Cho,Tae Whan Kim,Jongmin Kim,Yongcheol Jo,I Seul Ryu,Seongsu Hong,Jae‐Joon Lee,SeungNam Cha,Eun Bi Nam,Sang Uck Lee,Sam Kyu Noh,Hyungsang Kim,Jungwon Kwak,Hyunsik Im
标识
DOI:10.1038/s41377-020-00391-8
摘要
Compared with solid scintillators, liquid scintillators have limited capability in dosimetry and radiography due to their relatively low light yields. Here, we report a new generation of highly efficient and low-cost liquid scintillators constructed by surface hybridisation of colloidal metal halide perovskite CsPbA3 (A: Cl, Br, I) nanocrystals (NCs) with organic molecules (2,5-diphenyloxazole). The hybrid liquid scintillators, compared to state-of-the-art CsI and Gd2O2S, demonstrate markedly highly competitive radioluminescence quantum yields under X-ray irradiation typically employed in diagnosis and treatment. Experimental and theoretical analyses suggest that the enhanced quantum yield is associated with X-ray photon-induced charge transfer from the organic molecules to the NCs. High-resolution X-ray imaging is demonstrated using a hybrid CsPbBr3 NC-based liquid scintillator. The novel X-ray scintillation mechanism in our hybrid scintillators could be extended to enhance the quantum yield of various types of scintillators, enabling low-dose radiation detection in various fields, including fundamental science and imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI