计算机科学
人工智能
化学信息学
工具箱
人工神经网络
机器学习
计算模型
生成语法
化学
程序设计语言
计算化学
作者
Yang Hong,Bo Hou,Hengle Jiang,Jingchao Zhang
摘要
Abstract Artificial intelligence (AI) has been referred to as the “fourth paradigm of science,” and as part of a coherent toolbox of data‐driven approaches, machine learning (ML) dramatically accelerates the computational discoveries. As the machinery for ML algorithms matures, significant advances have been made not only by the mainstream AI researchers, but also those work in computational materials science. The number of ML and artificial neural network (ANN) applications in the computational materials science is growing at an astounding rate. This perspective briefly reviews the state‐of‐the‐art progress in some supervised and unsupervised methods with their respective applications. The characteristics of primary ML and ANN algorithms are first described. Then, the most critical applications of AI in computational materials science such as empirical interatomic potential development, ML‐based potential, property predictions, and molecular discoveries using generative adversarial networks (GAN) are comprehensively reviewed. The central ideas underlying these ML applications are discussed, and future directions for integrating ML with computational materials science are given. Finally, a discussion on the applicability and limitations of current ML techniques and the remaining challenges are summarized. This article is categorized under: Computer and Information Science > Chemoinformatics. Structure and Mechanism > Computational Materials Science. Computer and Information Science > Computer Algorithms and Programming. Software > Molecular Modeling.
科研通智能强力驱动
Strongly Powered by AbleSci AI