Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges

阳极 成核 材料科学 枝晶(数学) 法拉第效率 锂(药物) 电解质 纳米技术 电化学电位 电化学 化学 电极 医学 几何学 数学 有机化学 物理化学 内分泌学
作者
Mingda Gao,Hui Li,Li Xu,Qing Xue,Xinran Wang,Ying Bai,Chuan Wu
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:59: 666-687 被引量:120
标识
DOI:10.1016/j.jechem.2020.11.034
摘要

The dependence on portable devices and electrical vehicles has triggered the awareness on the energy storage systems with ever-growing energy density. Lithium metal batteries (LMBs) has revived and attracted considerable attention due to its high volumetric (2046 mAh cm−3), gravimetric specific capacity (3862 mAh g−1) and the lowest reduction potential (−3.04 V vs. SHE.). However, during the electrochemical process of lithium anode, the growth of lithium dendrite constitutes the biggest stumbling block on the road to LMBs application. The undesirable dendrite not only limit the Coulombic efficiency (CE) of LMBs, but also cause thermal runaway and other safety issues due to short-circuits. Understanding the mechanisms of lithium nucleation and dendrite growth provides insights to solve these problems. Herein, we summarize the electrochemical models that inherently describe the lithium nucleation and dendrite growth, such as the thermodynamic, electrodeposition kinetics, internal stress, and interface transmission models. Essential parameters of temperature, current density, internal stress and interfacial Li+ flux are focused. To improve the LMBs performance, state-of-the-art optimization procedures have been developed and systematically illustrated with the intrinsic regulation principles for better lithium anode stability, including electrolyte optimization, artificial interface layers, three-dimensional hosts, external field, etc. Towards practical applications of LMBs, the current development of pouch cell LMBs have been further introduced with different assembly systems and fading mechanism. However, challenges and obstacles still exist for the development of LMBs, such as in-depth understanding and in-situ observation of dendrite growth, the surface protection under extreme condition and the self-healing of solid electrolyte interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金子完成签到,获得积分10
1秒前
1秒前
m123完成签到,获得积分10
1秒前
南瓜气气完成签到,获得积分10
1秒前
1秒前
尤里新兵完成签到,获得积分10
2秒前
2秒前
凤兮完成签到 ,获得积分10
3秒前
大气山兰应助周运来采纳,获得10
4秒前
周小浪完成签到,获得积分10
4秒前
HH完成签到,获得积分10
5秒前
小佟许的什么愿完成签到 ,获得积分10
5秒前
淡淡茉莉完成签到 ,获得积分10
5秒前
6秒前
lzcnextdoor发布了新的文献求助10
6秒前
哆啦梦完成签到,获得积分20
6秒前
二毛完成签到,获得积分10
7秒前
乐乐应助nyfz2002采纳,获得10
7秒前
自然妙旋完成签到,获得积分10
8秒前
slowride发布了新的文献求助10
9秒前
周运来完成签到,获得积分10
9秒前
慧慧子完成签到,获得积分10
10秒前
10秒前
feilei完成签到,获得积分10
10秒前
lzcnextdoor完成签到,获得积分10
11秒前
黑糖珍珠完成签到 ,获得积分10
12秒前
12秒前
13秒前
晓先森完成签到,获得积分10
13秒前
夏傥完成签到,获得积分10
13秒前
changaipei完成签到,获得积分10
15秒前
落后的听双完成签到 ,获得积分10
15秒前
水尽云生处完成签到,获得积分10
16秒前
江川锦鲤完成签到,获得积分10
16秒前
宇与鱼发布了新的文献求助10
16秒前
Accept应助AHR采纳,获得10
16秒前
靓丽行天完成签到,获得积分10
16秒前
学术乞丐感谢好心人完成签到,获得积分10
17秒前
神勇语堂完成签到 ,获得积分10
18秒前
Dreamer0422完成签到,获得积分10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816035
求助须知:如何正确求助?哪些是违规求助? 3359486
关于积分的说明 10403177
捐赠科研通 3077391
什么是DOI,文献DOI怎么找? 1690292
邀请新用户注册赠送积分活动 813716
科研通“疑难数据库(出版商)”最低求助积分说明 767759