Crystal symmetry determination in electron diffraction using machine learning

电子背散射衍射 布拉维晶格 衍射 电子衍射 人工神经网络 计算机科学 人工智能 电子晶体学 卷积神经网络 材料科学 同步加速器 结晶学 晶体结构 光学 物理 化学
作者
Kevin Kaufmann,Chaoyi Zhu,Alexander S. Rosengarten,Daniel Maryanovsky,Tyler Harrington,Eduardo Marin,Kenneth S. Vecchio
出处
期刊:Science [American Association for the Advancement of Science]
卷期号:367 (6477): 564-568 被引量:139
标识
DOI:10.1126/science.aay3062
摘要

Accurately determining the crystallographic structure of a material, organic or inorganic, is a critical primary step in material development and analysis. The most common practices involve analysis of diffraction patterns produced in laboratory XRD, TEM, and synchrotron X-ray sources. However, these techniques are slow, require careful sample preparation, can be difficult to access, and are prone to human error during analysis. This paper presents a newly developed methodology that represents a paradigm change in electron diffraction-based structure analysis techniques, with the potential to revolutionize multiple crystallography-related fields. A machine learning-based approach for rapid and autonomous identification of the crystal structure of metals and alloys, ceramics, and geological specimens, without any prior knowledge of the sample, is presented and demonstrated utilizing the electron backscatter diffraction (EBSD) technique. Electron backscatter diffraction patterns are collected from materials with well-known crystal structures, then a deep neural network model is constructed for classification to a specific Bravais lattice or point group. The applicability of this approach is evaluated on diffraction patterns from samples unknown to the computer without any human input or data filtering. This is in comparison to traditional Hough transform EBSD, which requires that you have already determined the phases present in your sample. The internal operations of the neural network are elucidated through visualizing the symmetry features learned by the convolutional neural network. It is determined that the model looks for the same features a crystallographer would use, even though it is not explicitly programmed to do so. This study opens the door to fully automated, high-throughput determination of crystal structures via several electron-based diffraction techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼呼呼完成签到 ,获得积分10
1秒前
板栗子发布了新的文献求助10
2秒前
Akim应助年轻的藏今采纳,获得10
2秒前
bkagyin应助try采纳,获得50
3秒前
Ava应助LYHUIII采纳,获得10
4秒前
无花果应助一见憘采纳,获得10
4秒前
受伤元灵关注了科研通微信公众号
6秒前
Yuna完成签到,获得积分10
7秒前
7秒前
8秒前
10秒前
12秒前
13秒前
伊斯塔发布了新的文献求助10
15秒前
ENIGMA__K发布了新的文献求助30
16秒前
受伤元灵发布了新的文献求助10
16秒前
王111完成签到,获得积分10
19秒前
Orange应助lsx采纳,获得10
20秒前
cdercder应助甜美宛儿采纳,获得10
21秒前
21秒前
赫赫完成签到,获得积分10
23秒前
许甜甜鸭应助cis2014采纳,获得10
24秒前
研友_LjDyNZ发布了新的文献求助20
25秒前
25秒前
研友_VZG7GZ应助伊斯塔采纳,获得10
25秒前
25秒前
小白发布了新的文献求助10
30秒前
tianqing发布了新的文献求助10
30秒前
英姑应助Iso采纳,获得10
31秒前
ant完成签到,获得积分10
32秒前
FashionBoy应助悠然采纳,获得10
32秒前
新新新新新发顶刊完成签到 ,获得积分10
32秒前
32秒前
Wangz发布了新的文献求助10
33秒前
伊斯塔完成签到,获得积分10
34秒前
科研狗完成签到 ,获得积分10
35秒前
虞丹萱发布了新的文献求助10
36秒前
甜美宛儿完成签到,获得积分10
36秒前
37秒前
情怀应助科研通管家采纳,获得10
37秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Maturation of NMDA receptor-mediated spontaneous postsynaptic currents in the rat locus coeruleus neurons 200
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834973
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498771
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705366
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772123